K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)

Áp dụng định lý Bezout ta có:

\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)

\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)

\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)

\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)

\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)

\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)

Từ (2) và (3)

\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)

\(\Leftrightarrow10a-3b-6a+3b=24\)

\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)

Thay \(a=6\)vào (1) ta có:

\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)

Vậy \(a=6\)và \(b=11\)

12 tháng 12 2020

Đề đúng chưa v

NV
3 tháng 6 2020

\(f\left(x\right)⋮\left(x-1\right)\left(x+2\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+\left(a+b\right)+\left(2+b\right)+1=0\\-8a+4\left(a+b\right)-2\left(2+b\right)+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-3\\-4a+2b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-\frac{1}{2}\end{matrix}\right.\)