Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bn lm đến đâu cx dc miễn là lm hộ mk cái ạ, ai đang lm vào nhắn tin vs mk để mk bít nha
a; \(-\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{71}{15}< x< -\dfrac{13}{7}+\dfrac{19}{14}-\dfrac{7}{2}\)
-\(\dfrac{19}{15}\) - \(\dfrac{71}{15}\) < \(x\) < -\(\dfrac{1}{2}\) - \(\dfrac{7}{2}\)
-6 < \(x\) < -4
vì \(x\) \(\in\) Z nên \(x\) = -5
bạn đã kiểm tra kĩ chưa vậy?mình đọc đề câu B mà loạn não luôn á;-;
\(1)\frac{1}{5}+\frac{2}{11}< \frac{x}{55}< \frac{2}{5}+\frac{1}{55}\)
\(\Rightarrow\frac{11}{55}+\frac{10}{55}< \frac{x}{55}< \frac{22}{55}+\frac{1}{55}\)
\(\Rightarrow\frac{21}{55}< \frac{x}{55}< \frac{23}{55}\)
\(\Rightarrow21< x< 23\)
\(\Rightarrow x=22\)
\(2)\frac{11}{3}+\frac{-19}{6}+\frac{-15}{2}\le x\le\frac{19}{12}+\frac{-5}{4}+\frac{-10}{3}\)
\(\Rightarrow\frac{22}{6}+\frac{-19}{6}+\frac{-45}{6}\le x\le\frac{19}{12}+\frac{-15}{12}+\frac{-40}{12}\)
\(\Rightarrow\frac{22+\left[-19\right]+\left[-45\right]}{6}\le x\le\frac{19+\left[-15\right]+\left[-40\right]}{12}\)
\(=\frac{-42}{6}\le x\le\frac{-36}{12}\)
\(\Rightarrow-7\le x\le-3\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
\(-\frac{1}{10}< =x< =\frac{3}{5}\)
\(\frac{-4}{9}< x< =\frac{2}{3}\)
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
Câu 1:a) \(\left(\frac{-5}{12}+\frac{6}{11}\right)+\left(\frac{7}{17}+\frac{5}{11}+\frac{5}{12}\right)\)
\(=\left(\frac{-5}{12}+\frac{5}{12}\right)+\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{7}{17}\)
\(=0+1+\frac{7}{17}\)
\(=\frac{17}{17}+\frac{7}{17}\)
\(=\frac{24}{17}\)
b) \(\frac{7}{12}-\left(\frac{5}{12}-\frac{5}{6}\right)\)
\(=\frac{7}{12}-\frac{5}{12}+\frac{5}{6}\)
\(=\frac{7}{12}-\frac{5}{12}+\frac{10}{12}\)
\(=\frac{7-5+10}{12}\)
\(=1\)
c) \(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{12}+\frac{1}{30}\)
\(=\frac{5}{60}+\frac{2}{60}\)
\(=\frac{7}{60}\)
Câu 2:a) \(\frac{x}{8}=2+\frac{-3}{2}\)
\(\Leftrightarrow\frac{x}{8}=\frac{4-3}{2}\)
\(\Leftrightarrow\frac{x}{8}=\frac{1}{2}\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=\frac{8}{2}\)
\(\Leftrightarrow x=4\)
b) \(\frac{-5}{6}+\frac{8}{3}+\frac{29}{-6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Leftrightarrow\frac{-18}{6}\le x\le4\)
\(\Leftrightarrow-3\le x\le4\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)