Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: ta có \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (1)
ta lại có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+a}\) (2)
từ 1 và 2: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
đề bạn còn viết thiếu nx kìa
a. Xét tg ABH vag tg CAI
Ta có: góc BAH = góc ACI=90 độ - góc IAC
AB=AC
góc AHB= góc CIA=90 độ
Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)
AD+BH=IC+AI=AB=AC
=>\(BH^2+CI^2\) có giá trị không đổi
c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD
AM vuông góc với DC =>AM là đường cao của tg ACD
Mà 2 đường cao CI và AM cắt nhau tại N
=>DN là đường cao thứ 3 của tg ACD
Vậy DN vuông góc với AC
d. AM vuông góc với BM
AI vuông góc với BH
=>góc MBH=góc MAI
Xét tg BHM và tg AIM
Ta có: BH=AI (chứng minh câu a)
Góc MBH=góc MAI(cmt)
BM=AM
Nên tg BHM=tg AIM(g.c.g)
=>HM=IM(1)
Góc BMH=góc AMI(2)
Từ (1) và (2) ta có:
Tg IMH vuông cân tại M
Vậy IM là tia phân giác của góc HIC
A B C M K E H 1 2 3 1 1 2 1 2 3
Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC
=> ΔAMB và ΔAMC vuông cân và bằng nhau
=> Góc C1= Góc A1
Xét ΔABH và ΔCAK có
BA=AC( ΔABC cân)
Góc B1=Góc A3 ( cùng phụ với góc BAK)
Đều _|_ AK
=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)
=> Góc BAK = Góc CAK
Mà Góc C1= Góc A1
=> Góc A2= Góc C2
Xét 2 ΔAHM và ΔCKM có
AM=MC ( đường trung tuyến ứng với cạnh huyền)
Góc A2= Góc C2 (cmt)
AH=CK (vì ΔCAK=ΔABH)
=> ΔAHM = ΔCKM (c.g.c)
=>HM=MK=> ΔMHK cân tại M (1)
Ta lại có Góc M1= Góc M2
mà Góc M1+góc M3=90o
=> Góc M2+ Góc M3 = Góc HMK =90o (2)
Từ (1) Và (2) => ΔMHK vuông cân tại M
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ; => Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
kẽ tam giác abc vuông cân tại A, điểm B trái , C phải sau đó lấy E đâu cx được, mình làm là lấy E ở giữa M và C, ko lấy vào trung điểm, còn lại vẽ tiếp theo bài ok.
đầu tiên chứng minh ABH^=CAK^:
+Có: AHB^=90 độ => HAB^+HBA^=90 độ
+Có: BAC^=HBA^+HAB^=90 độ=> BAH^+KAC^=HBA^+HAB^=> HBA^=KAC^
chứng minh tg AHB =tg CEA(ch-gnh):AHB^=CKA^=90 độ ; AB=CA(GT) ; HBA^=KAC^(CMT)
=>AH=CK ( giải thích)
tg KEA có : AKC^=90 độ=> KEC^+KCE^=90 độ
tg EMA có: AME^=90 độ =>MAE^+MEA^=90 độ
MEA^= KEC^(đối đỉnh)
3 điều trên suy ra KCE^=EAM^
CMĐ tg AHM =CKM(cgc): AH=CK;HAM^=KCM^;AM=MC(trung tuyến tg vuông)
=>HM=KM và AMH^=CMK^ => AHM^+HMC^=HMC^+CMK^ => AMC^=HMK^=90 độ
có HM=KM => tg HMK cân tại M ;HMK^=90 độ => tg HMK vuông cân tại M
duyệt đi olm !
A B C M H K E
a) Xét tam giác AME và tam giác CKE: ^BHA=^AKC=900; ^AEM=^KEC (Đối đỉnh)
=> ^MAE=^KCE. Ta có: ^BAM=^ACM=450 => ^BAM+^MAE=^ACM+^KCE
=> ^BAH=^ACK => Tam giác BHA= Tam giác AKC (Cạnh huyền góc nhọn)
=> BH=AK (2 cạnh tương ứng)
b) ^ABM=^MAC=450. Mà ^ABH=^CAK => ^ABM-^ABH=^MAC-^CAK => ^MBH=^MAK
=> Tam giác MBH=Tam giác MAK (c.g.c)
c) Tam giác MBH=Tam gics MAK (cmt) => ^BMH=^AMK (2 góc tương ứng)
=> ^AMB+^AMH=^KMH+^AMH => ^AMB=^KMH. Mà ^AMB=900.
=> ^KMH=900. Lại có MH=MK => Tam giác MHK vuông cân tại M.
3.bc= 4a=> c= 4a/b.
mà c= ab nên ab= 4a/b => b^2 = 4
- với b=2 ta có hệ : ac=8 và c= 2a . giải hệ được nghiệm a^2 =4 và c= +-2 => b=......
tương tự vs b=2