Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nào làm được bài này thì giúp mình với ạ ! mình đang cần gấp
Bài 4:
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=căn(25^2-15^2)=20(cm)
Xét ΔABC vuông tại A có sin ABC=AC/BC=4/5
nên góc ABC=53 độ
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
a, \(ĐPCM:\hept{\begin{cases}\sqrt{x}-2\ne0\\3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne4\\x\ne9\\x\ge0\end{cases}}\)
\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Bài 2:
a: \(BC=\sqrt{10^2+8^2}=2\sqrt{41}\left(cm\right)\)
\(AH=\dfrac{8\cdot10}{2\sqrt{41}}=\dfrac{40}{\sqrt{41}}\left(cm\right)\)
\(BH=\dfrac{64}{2\sqrt{41}}=\dfrac{32}{\sqrt{41}}\left(cm\right)\)
\(CH=\dfrac{100}{2\sqrt{41}}=\dfrac{50}{\sqrt{41}}\left(cm\right)\)
b: \(\dfrac{AD}{BD}=\dfrac{AH^2}{AB}:\dfrac{BH^2}{AB}=\dfrac{AH^2}{BH^2}\)
câu 2
\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)
câu 1
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)
Câu 1:
a)
\(5\sqrt{x}-2=13\Rightarrow 5\sqrt{x}=15\Rightarrow \sqrt{x}=3\)
\(\Rightarrow x=3^2=9\)
b)
\(\sqrt{8x}+7\sqrt{18x}=9-\sqrt{50x}\)
\(\Leftrightarrow \sqrt{4}.\sqrt{2x}+7\sqrt{9}.\sqrt{2x}=9-\sqrt{25}.\sqrt{2x}\)
\(\Leftrightarrow 2\sqrt{2x}+21\sqrt{2x}=9-5\sqrt{2x}\)
\(\Leftrightarrow 28\sqrt{2x}=9\Rightarrow \sqrt{2x}=\frac{9}{28}\)
\(\Rightarrow 2x=(\frac{9}{28})^2\Rightarrow x=\frac{1}{2}.(\frac{9}{28})^2\)
Câu 2:
a) \(Q=\frac{2\sqrt{x}-9}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{2\sqrt{x}-9-(x-9)+(2x-3\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-3)}\)
\(=\frac{x-\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{(\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) Để \(Q=2\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-3}=2\Rightarrow \sqrt{x}+1=2\sqrt{x}-6\)
\(\sqrt{x}=7\Rightarrow x=49\)
c)
\(Q\in \mathbb{Z}\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-3}\in \mathbb{Z}\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-3\)
\(\Leftrightarrow \sqrt{x}-3+4\vdots \sqrt{x}-3\)
\(\Leftrightarrow 4\vdots \sqrt{x}-3\Rightarrow \sqrt{x}-3\in \left\{\pm 1; \pm 2; \pm 4\right\}\)
\(\Rightarrow \sqrt{x}\in \left\{2;4;1; 5; 7\right\}\)
\(\Rightarrow \sqrt{x}\in \left\{4; 16; 1; 25; 49\right\}\)