Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)
( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )
\(\Rightarrow n\in\left\{0;1\right\}\)
( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )
- \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}\) nguyên
=>21 chia hết cho n-4
=>n-4\(\in\)Ư(21)
=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)
- \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B nguyên thì \(\frac{8}{2n-1}\) nguyên
=>8 chia hết cho 2n-1
=>2n-1\(\in\)Ư(8)
=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)
Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)
Từ (1) và (2) => n=1 thì A và B nguyên
n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)
\(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)
Kết luận:n=1 thì A=-4 và B=11
Bài 1:
Để \(A=\frac{a-5}{10-a}\) là số hữu tỉ dương
=> \(a-5\ge0\Rightarrow a\ge5\)
\(10-a\ge0\Rightarrow a\ge10\)
KL: a lớn hơn hoặc bằng 10 thì A là 1 số hữu tỉ dương
Bài 2: tìm n thuộc Z, để x = 2n-1/n-1 ; y = n-1/2n-1 là số nguyên ( bài 2 bn thiếu điều kiện thì phải
a) ta có: \(x=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2.\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để x nguyên
=> 1/n-1 nguyên
=> 1 chia hết cho n-1
=> n - 1 thuộc Ư(1)={1;-1}
nếu n - 1 = 1 => n = 2 (TM)
n-1 = -1 => n = 0 (TM)
KL:...
b) Để y nguyên
\(\Rightarrow\frac{n-1}{2n-1}\) nguyên
=> n - 1 chia hết cho 2n - 1
=> 2n - 2 chia hết cho 2n - 1
2n - 1 - 1 chia hết cho 2n - 1
mà 2n-1 chia hết cho 2n - 1
=> 1 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(1)={1;-1}
nếu 2n - 1 = 1 => 2n = 2 => n = 1 (TM)
2n - 1 = - 1 => 2n = 0 => n = 0 (TM)
KL:..
Trả lời:
Bài 1 : \(\text{(3x - 5)=4}\)
\(\text{3x - 5=4}\)
\(\text{3x =4+5}\)
\(\text{3x =9}\)
\(x=\frac{9}{3}\)
\(x=3\)
Vậy \(x=3\)
~ Học tốt ~
Bài 2:
a) A = \(\frac{3n+9}{n-4}\)
Để \(\frac{3n+9}{n-4}\) có giá trị là 1 số nguyên thì:
\(3n+9⋮n-4\)
hay \(3n-12+21⋮n-4\)
\(3.\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\) ( vì \(3.\left(n-4\right)⋮n-4\)
\(\Rightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
Vậy \(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
~ Học tốt ~
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11