\(\dfrac{x^2+2x+12}{x-5}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

mik làm câu 1 nhé

để biểu thức nhận giá trị nguyên thì x2+2x+12 chia hết cho x-5 ( 1)

Mà x-5 chia hết cho x-5 => x(x-5) chia hết cho x-5

hay x2-5x chia hết cho x-5 (2)

lấy (1)trừ (2) ta được

x2+2x+12 -x2+5x chia hết cho x-5

hay 7x+12 chia hết cho x-5

=> 7(x-5)+47 chia hết cho x-5

=>47 chia hết cho x-5

=> x-5 thuộc ước nguyên của 47

đến đây bạn tự làm tiếp nhé !!

5 tháng 3 2017

vòng bn vậy bn

11 tháng 4 2017

:v Thay cái câu đó = mấy cái dấu roài giải BPT thôi mà

11 tháng 4 2017

mk làm đc rồi

Câu 3: 

Ta có: \(1< \dfrac{x+1}{5}-\dfrac{x-2}{3}< \dfrac{7}{5}\)

\(\Leftrightarrow1< \dfrac{3x+3-5x+10}{15}< \dfrac{7}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2x+13}{15}>1\\\dfrac{-2x+13}{15}< \dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+13>15\\-2x+13< 21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2x>2\\-2x< 8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\Leftrightarrow-4< x< -1\)

Bài 4: 

Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+3\right)< =40\)

\(\Leftrightarrow x^2+4x+4-x^2+9< =40\)

=>4x<=27

hay x<=27/4

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị...
Đọc tiếp

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0

Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........

Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........

Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......

Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu thức x2 + \(\frac{1}{x^2}\)là.......

Câu 6: Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0

Giá trị của biểu thức P = \(\frac{3x^2y-1}{4xy}\) là........

Câu 7: Một hình thang cân có góc ở đáy bằng 450, cạnh bên bằng 2cm, đáy lớn bằng 3cm. Độ dài đường trung bình của hình thang là..........

Câu 8: Biến đổi biểu thức \(\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) với x \(\ne\) 2 ta được phân thức .................

1
3 tháng 1 2017

trôi hết đề : Câu 7

\(\left(3-\sqrt{2}\right)\)

câu 8:

\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)

Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)

7 tháng 5 2018

3.

a) \(2x+5=20-3x\)

\(\Leftrightarrow2x+3x=20-5\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-1\right)+\left(x+3\right)\right]\left[\left(2x-1\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{2}{3};4\right\}\)

c) \(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\)

\(\Leftrightarrow\left(5x-4\right)7=\left(16x+1\right)2\)

\(\Leftrightarrow35x-28=32x+2\)

\(\Leftrightarrow35x-32x=2+28\)

\(\Leftrightarrow2x=30\)

\(\Leftrightarrow x=15\)

Vậy \(S=\left\{15\right\}\)

d) \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Rightarrow\left(2x+1\right)12-\left(x-2\right)18=\left(3-2x\right)24-72x\)

\(\Leftrightarrow24x+12-18x+36=72-48x-72x\)

\(\Leftrightarrow6x+48=72-120x\)

\(\Leftrightarrow6x+120x=72-48\)

\(\Leftrightarrow126x=24\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy \(S=\left\{\dfrac{4}{21}\right\}\)

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)