Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)
a) \(\dfrac{1,2}{x+3}=\dfrac{5}{4}\)
\(\Rightarrow\left(x+3\right).5=1,2.4\)
\(\Rightarrow\left(x+3\right).5=4,8\)
\(\Rightarrow x+3=4,8:5\)
\(\Rightarrow x+3=0,96\)
\(\Rightarrow x=-2,04\)
vậy \(x=-2,04\)
b)\(\dfrac{3}{5}:\dfrac{2x}{15}=\dfrac{1}{2}:\dfrac{4}{5}\)
\(\Rightarrow\dfrac{3}{5}:\dfrac{2x}{15}=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{2x}{15}=\dfrac{3}{5}:\dfrac{5}{8}\)
\(\Rightarrow\dfrac{2x}{15}=\dfrac{24}{25}\)
\(\Rightarrow15.24=\left(2x\right).25\)
\(\Rightarrow360=\left(2x\right).25\)
\(\Rightarrow360:25=2x\)
\(\Rightarrow14,4=2x\)
\(\Rightarrow x=7,2\)
vậy \(x=7,2\)
\(a,\dfrac{1,2}{x+3}=\dfrac{5}{4}\\ \left(x+3\right).5=1,2.4\\ 5x+8=4,8\\ 5x=4,8-8\\ 5x=-3,2\\ x=-3,2:5=-0,64\)
\(b,\dfrac{3}{5}:\dfrac{2x}{15}=\dfrac{1}{2}:\dfrac{4}{5}\\ \dfrac{2x}{15}=\dfrac{3}{5}\cdot\dfrac{4}{5}:\dfrac{1}{2}\\ \dfrac{2x}{15}=\dfrac{12}{25}.2\\ \dfrac{2x}{25}=\dfrac{24}{25}\\ 2x=\dfrac{24}{25}.5\\ 2x=\dfrac{24}{5}\\ x=\dfrac{24}{5}\cdot\dfrac{1}{2}=\dfrac{12}{5}\)
\(c,-\dfrac{4}{2,5}:3,5=1,5:x\\ x=3,5.1,5:\left(-\dfrac{4}{25}\right)\\ x=\dfrac{21}{4}\cdot\left(-\dfrac{25}{4}\right)=-\dfrac{525}{16}\)
\(d,0,12:3=2x:\dfrac{3}{5}\\ 2x=0,12\cdot\dfrac{3}{5}:3\\ 2x=\dfrac{9}{125}\cdot\dfrac{1}{3}\\ 2x=\dfrac{3}{125}\\ x=\dfrac{3}{125}\cdot\dfrac{1}{2}=\dfrac{3}{250}\)
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
6) Tìm giá trị lớn nhất : A = 0,5 - | x - 3,5 |
Vì | x - 3,5 | \(\ge\) 0
nên A= 0,5 - | x - 3,5 | \(\le\) 0,5
GTLN của A là 0,5 khi và chỉ khi x-3,5= 0
=> x= 3,5
5) Tìm x thuộc Q :(x +1)(x-2) < 0
Để (x +1)(x-2) \(\in Q\)
Thì x+1 và x-2 khác dấu
mà ta thấy x+1 > x-2 ( luôn luôn xảy ra)
=> x+1\(\ge\)0 => x= -1
x-2\(\le\) 0 => x= 2
Vậy -1 <x <2
vậy: x \(\in\) 0;1
bài 4:
gọi x. y, z, k lần lượt là số học sinh khối 6, 7, 8,9
theo đề ta có:
\(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\) và y-k= 22
=> \(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\)= \(\dfrac{y-k}{10-8}=\dfrac{22}{2}=11\)
=> x= 121
y= 110
z= 99
k= 88
Vậy khối 6, 7, 8, 9 có..............................
Cái này chỉ cần làm quy tắc nhân chéo là ra rồi nhé :)
a) \(x=\dfrac{-2,6.42}{-12}\)=9,1
b) x = \(\dfrac{2,5.12}{1.5}\) = 20
c) Nhân chéo: 7.(x-1) = 6.(x+5)
<=> 7x - 7 = 6x +30
<=> 7x - 6x = 7 + 30 (chuyển vế)
-> x = 37
d) Nhân chéo: 25x2 = 24.6 = 144
x2 = \(\dfrac{144}{25}\)=5,76
-> x = \(\sqrt{5,76}\) = 2,4
e) Nhân chéo: (x-2)2 = 4.9 = 36
Ta dễ thấy (x-2)2 = 62
-> x-2 = 6 -> x = 6+2 = 8
TICK NHÉ :)
a, \(\dfrac{13}{32}+\dfrac{8}{24}+\dfrac{19}{32}+\dfrac{2}{3}\)
\(=\left(\dfrac{13}{32}+\dfrac{19}{32}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{32}{32}+\dfrac{3}{3}=1+1=2\)
b, \(\dfrac{3}{4}.36\dfrac{1}{5}-\dfrac{3}{4}.2\dfrac{1}{5}\)
\(=\dfrac{3}{4}.\left(36\dfrac{1}{5}-2\dfrac{1}{5}\right)\)
\(=\dfrac{3}{4}.\left[\left(36-2\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\right]\)
\(=\dfrac{3}{4}.34=\dfrac{102}{4}=26\)
Bài 2:
a: x=27/10:9/5=27/10*5/9=135/90=3/2
b: =>|x|=1,75
=>x=1,75 hoặc x=-1,75
c: =>\(2-x=\sqrt[3]{25}\)
hay \(x=2-\sqrt[3]{25}\)
d: =>3^x-1*6=162
=>3^x-1=27
=>x-1=3
=>x=4
Bài 1:
a) \(\dfrac{x}{15}=\dfrac{-2}{3,5}\)\(\Rightarrow x=\dfrac{15\cdot\left(-2\right)}{3,5}=-\dfrac{60}{7}\)
b) \(\dfrac{16}{x}=\dfrac{x}{25}\)\(\Rightarrow x^2=16\cdot25\Rightarrow x^2=400\Rightarrow x=\pm20\)
c) \(\dfrac{0,5}{0,7}=\dfrac{-0,1}{5x}\)\(\Rightarrow5x=\dfrac{\left(-0,1\right)\cdot0,7}{0,5}=-\dfrac{7}{50}\Rightarrow x=\dfrac{-\dfrac{7}{50}}{5}=-0,028\)
Bài 3:
a) Theo đề, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}\) và \(x+y=60\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=50\)
b) Theo đề ta có:
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=-5\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{-5}{-2}=2,5\)
\(\Rightarrow\dfrac{x}{3}=2,5\Rightarrow x=7,5\)
\(\Rightarrow\dfrac{y}{5}=2,5\Rightarrow y=12,5\)
c) Theo đề ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(y+z-x=8\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{y+z-x}{4+6-2}=\dfrac{8}{8}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\)
\(\Rightarrow\dfrac{z}{6}=1\Rightarrow z=6\)
d) Theo đề ta có
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\) và \(x+y-z=50\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{x+y-z}{9+12-16}=\dfrac{50}{5}=10\)
\(\Rightarrow\dfrac{x}{9}=10\Rightarrow x=90\)
\(\Rightarrow\dfrac{y}{12}=10\Rightarrow y=120\)
\(\Rightarrow\dfrac{z}{16}=10\Rightarrow z=160\)
e) Theo đề ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)và \(2x+3y+5z=86\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot3+3\cdot4+5\cdot5}=\dfrac{86}{43}=2\)
\(\Rightarrow\dfrac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\dfrac{y}{4}=2\Rightarrow y=8\)
\(\Rightarrow\dfrac{z}{5}=2\Rightarrow z=10\)
f) Theo đề ta có
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)và \(x+y+z=-28\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{-28}{14}=-2\)
\(\Rightarrow\dfrac{x}{2}=-2\Rightarrow x=-4\)
\(\Rightarrow\dfrac{y}{5}=-2\Rightarrow y=-10\)
\(\Rightarrow\dfrac{z}{7}=-2\Rightarrow z=-14\)
g) Theo đề ta có
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\) và \(2x^2+y^2+3z^2=316\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{2x^2+y^2+3z^2}{2\cdot3^2+7^2+3\cdot2^2}=\dfrac{316}{79}=4\)
\(\Rightarrow\dfrac{x}{3}=4\Rightarrow x=12\)
\(\Rightarrow\dfrac{y}{7}=4\Rightarrow y=28\)
\(\Rightarrow\dfrac{z}{2}=4\Rightarrow z=8\)
Câu 1: D
Câu 2: A