Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(n^{150}<5^{225}\Rightarrow\left(n^2\right)^{75}<\left(5^3\right)^{75}\Rightarrow n^2<5^3\)
\(\Rightarrow n^2<125\Rightarrow n^2=121\)(do \(n\in Z\)và n lớn nhất)
Vậy: n = 11
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
a: \(\Leftrightarrow2^5\ge2^n>2^2\)
=>2<n<=5
hay \(n\in\left\{3;4;5\right\}\)
b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)
=>5<=n<=5
=>n=5
\(2^{50}=\left(2^5\right)^{10}=32^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}\)
Suy ra: 250 > 520
b)
\(9^{200}=\left(9^2\right)^{100}=81^{100}\)
Suy ra: 99100 > 81100
A) \(\left(\frac{1}{3}\right)^{^2}.\frac{1}{3}.9^2=3=3^1\)(viết dưới dạng lũy thừa)
B)\(8< 2^n< 2.16\)
\(2^3< 2^n< 2.2^4\)
\(2^3< 2^n< 2^5\)
\(\Rightarrow3< n< 5\)
mà n là số tự nhiên => n = 4
C) |-x| = 1 => |x| = 1 => x = -1 hoặc x = 1.
|2x| = 6.7 + (-3,3) - 0.4 = 42 - 3,3 - 0 = 42 - 3,3 = 38,7
=> 2x = 38,7 hoặc 2x = -38,7
=> x = 19,35 hoặc x = -19,35
a.ta có: \(3^{2009}\)
\(9^{1005}\)= \(\left(3^2\right)^{1005}\) =\(3^{2010}\)
*Vì 2010> 2009 =>\(3^{2009}\) < \(3^{2010}\)
Vậy \(3^{2009}\) < \(9^{1005}\).