Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé
a.(2n+5) chia hết cho (n-1)
Ta có :2n+5=2n-1+6
Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1
=>n-1 thuộc Ư(6)
Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}
Ta có bảng giá trị sau :
n-1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -5 | 7 |
Vậy n thuộc {0;2;-1;3;-2;4;-5;7}
HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM
1, a) Để 13/x-1 là số nguyên thì 13 chia hết cho x-1
Suy ra x-1 thuộc {1;-1;13;-13}
x thuộc {2;0;14;-12}
b)Để x+3/x-2 là số nguyên thì x+3 chia hết cho x-2
hay x-2+5 chia hết cho x-2
Vì x-2 chia hết cho x-2 nên 5 phải chia hết cho x-2
Suy ra x-2 thuộc {1;-1;5;-5}
x thuộc {3;1;7;-3}
c)Để x-2/5 là số nguyên thì x-2 chia hết cho 5
Suy ra x-2 = 5k (k thuộc Z)
x = 5k +2
Vậy....
2, a)Vì a/2 = 3/6
nên a.6 = 3.2
a.6 = 6
Suy ra a=1
Vậy a=1
b)Vì b/-2 = -8 /b nên b.b = -2 . (-8)
Suy ra b^2 = 16
b^2 = 4^2 hoặc b^2 = (-4)^2
Suy ra b =4 hoặc b= -4
Vậy...
c)Vì 3/c-5 = 4/c+2 nên -4.(c-5) = 3.(c+2)
hay -4.c + 20 = 3c + 6
20 - 6 = 3c + 4c
14 = 7c
Suy ra c=2
Vậy....
d)Vì a/3 = 6/b = c/10 = -1/2
nên c/10 = -1/2 nên 2.c = -10 Suy ra c=-5
Suy ra a/3 = 6/b = -5/10 = -1/2
Ta có: 6/b = -1/2 nên -1.b = 12 Suy ra b = -12
a/3 = -1/2 nên 2a = -3 Vì 3 không chia hết cho 2 nên a không là số nguyên
Vậy....
3,Vì a/b=b/c=c/a nên a/b=b/c=c/a=a+b+c/c+b+a =1
Suy ra a=b=c
Vậy....
P/s:Áp dụng công thức a/b=b/a=a+b/b+a
4,Vì x/5=-3/y nên -15 = xy
Suy x và y là ước của -15
Ta có bẳng sau
w | 1 | -1 | 3 | -3 | -15 | 15 |
| ||||||||||||||||||
y |
Vậy....(Cái bảng hơi lộn xộn 1 xíu nhé!Xin lỗi)
Câu 1:
a) Gọi biểu thức đó là A
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vài công thức ta có ;
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) Gọi biểu thức đó là S
\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)
\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)
Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã
Câu 2 :
a) \(\frac{5}{n+1}\)
Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5
n+1=1 => n = 0
n + 1 =5 => n = 4
n+1=-1 => n =-2
n+1 = -5 => n = -6
b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)
Để biểu thức là số nguyên thì n + 1 là ước của 7
n + 1 = 1 => n= 0
n+1=7=> n =6
n + 1 = -7 => n =-8
n+1=-1 => n= -2
c) \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)
Để biểu thức là số nguyên thì n+1 là ước của 6
n+1 = | 1 | -1 | 6 | -6 |
n = | 0 | -2 | 5 | -7 |
Từ đó KL giá trị n
CÂU 3 :
b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)
x+2= | 1 | -1 | 2 | -2 |
x = | -1 | -3 | 0 | -4 |
Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!
Ai thấy đúng thì ủng hộ nha !!!
câu 1 :
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)
\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)
Vì phép nhân có thể rút gọn
Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)
Câu 2 :
a) Ta có : \(\frac{5}{n+1}\)
Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }
Với n + 1 = -1 => n = -1 - 1 = - 2 ( TM )
Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )
Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )
Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )
Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1
Còn câu b nữa tương tự nha
" TM là thỏa mản "
a) Ta có : \(\left(x+3\right)\left(y+2\right)=1\)
Vì \(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau :
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | -1 | 1 |
y | -3 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-2;-3\right);\left(-4;-1\right)\right\}\)
Các phần sau làm tương tự
a) (x+3).(y+2)=1
=>x+3 và y+2 thuộc Ư(1)={1;-1}
Ta có bảng sau
x+3 | 1 | -1 |
y+2 | 1 | -1 |
x | -2 | -4 |
y | -1 | -3 |
Vậy....
Các câu khác lm tương tự nha
a) Cộng theo vế 3 đẳng thức đã cho ta được:
\(2\left(a+b+c\right)=6\Leftrightarrow a+b+c=3\)
\(\Rightarrow\hept{\begin{cases}a=\left(a+b+c\right)-\left(b+c\right)\\b=\left(a+b+c\right)-\left(a+c\right)\\c=\left(a+b+c\right)-\left(a+b\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3-1=2\\b=3-6=-3\\c=3-\left(-1\right)=4\end{cases}}\)
Đợi mình xíu, mình giải cho.