K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)Câu 5:...
Đọc tiếp

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)

Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)

Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)

Câu 6: Tìm số tự nhiên n để các phân số tối giản

 \(A=\frac{2n+3}{3n-1}\)\(B=\frac{3n+2}{7n+1}\)

Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

Câu 8: Chứng tỏ rằng: 

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)

Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)

Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)

1
24 tháng 4 2018

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

11 tháng 6 2016

Câu 2) 

1)* Nếu : \(x^2-2\ge0;2-x^2\ge0=>x^2-2+2-x^2\)=28

=> \(x^2-x^2-2+2=28=>0x^2=28\) ( vô lý )

Vậy x không có giá trị

* Nếu : \(x^2-2< 0:2-x^2< 0\)

=> \(-\left(x^2-2\right)-\left(2-x^2\right)=28=>-x^2+2-2+x^2=28=>0x^2=28\left(l\right)\)

Vậy từ hai trường hợp trên x không có giá trị

2) 77621(mod3)7767761(mod3)7762≡1(mod3)⇒776776≡1(mod3)
7777770(mod3)777777≡0(mod3)
77821(mod3)7787781(mod3)7782≡1(mod3)⇒778778≡1(mod3)
A2(mod3)⇒A≡2(mod3) 

8 tháng 1 2017

ai trả lời cả cách làm là  mih ko cần nhanh 

19 tháng 1 2020

1a Để \(\frac{x+1}{2}\)=\(\frac{8}{x+1}\)

\(\Rightarrow\)x+1.(x+1)=2.8=16

\(\Rightarrow\)x+1(x+1)=4.4

suy ra x+1=4

x=4-1

x=3

18 tháng 2 2020

a)(x+1)(x+1)=16

(x+1)^2=4^2

+)x+1=4

x=3

+)x+1=-4

x=-5

Câu 1:a) tính giá trị các biểu thức sau:A=2[(62 - 24) : 4] + 2014B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)Câu 2:a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)Câu 3: a) tìm số tự nhiên n để...
Đọc tiếp

Câu 1:

a) tính giá trị các biểu thức sau:

A=2[(6- 24) : 4] + 2014

B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)

b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

Câu 2:

a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42

c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)

Câu 3: 

a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố

b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b

c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên

câu 4:

1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm

a)tính MN

b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP

c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN

2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó

Câu 5:

a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)

b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n

0
Bài 1:a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm...
Đọc tiếp

Bài 1:

a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?

b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?

Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:

\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}-\frac{4}{19}}\)

\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)

\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{153}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)

Bài 3: Tìm x biết :

\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)

 

 

 

 

 

 

 

 

1
14 tháng 8 2016

a) số chia cho 9 dư 5 có dạng 9a+5 
ta có 9a+5 chia 7 dư 2a+5 
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2 
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2 
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5 
=>3b/10-1/2 là số nguyên 
=>3b-5 chia hết cho 10 
=>b=5 
=>số cần tìm là 63*5/2+1/2=158

Bài 1:a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm...
Đọc tiếp

Bài 1:

a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?

b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?

Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:

\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{19}}\)

\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)

\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{135}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)

Bài 3: Tìm x biết : 

\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)

 

 

 

 

 

 

1
13 tháng 8 2016

Bài 1 :

a.  Gọi số cần tìm là a.

Ta có:  a : 5 dư 3 

             a : 7 dư 4    => 2a -1 chia hết cho 5; 7; 9 mà 

             a : 9 dư 5    a nhỏ nhất => 2a - 1 nhỏ nhất

                                  => 2a - 1 \(\in\) BCNN\(\left(5,7,9\right)\) = 315

                                  => 2a = 316 => a = 158

          Vậy số tự nhiên cần tìm là 158

Bài 2:

A = 2880 : \(\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

A = 2880 : \(\left\{\left[119-7^2\right].2-25.4\right\}\)

A = 2880 : \(\left\{\left[119-49\right].2-100\right\}\)

A = 2880 : \(\left\{70.2-100\right\}\)

A = 2880 : \(\left\{140-100\right\}\)

A = 2880 : 40

A = 72

B = \(\frac{\frac{-2}{13}-\frac{3}{15}+\frac{3}{10}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{10}}\)

B = \(\frac{\frac{-23}{65}+\frac{3}{10}}{\frac{112}{195}+\frac{4}{10}}\)

B = \(\frac{-3}{20}\)

NHƯ VẬY MÀ BẠN BẢO TÍNH HỢP LÍ SAO TOÀN NHỮNG PHÉP TÍNH RA SỐ TO KHỦNG MÌNH THẤY CHẲNG HỌP LÍ TÍ NÀO CẢ NÊN MÌNH KHÔNG LÀM BÀI NÀY NỮA NHƯNG NHỚ TÍCH CHO MÌNH NHA

 

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)