Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x + 2 chia hết cho x - 1
\(\Rightarrow\) x - 1 + 3 chia hết cho x - 1
\(\Rightarrow\) 3 chia hết cho x - 1 ( vì x - 1 chia hết cho x - 1)
\(\Rightarrow x-1\inƯ\left(3\right)\)
Vì x là số tự nhiên nên \(x-1\in\left\{1,3\right\}\)
\(\Rightarrow x\in\left\{2,4\right\}\)
Vậy x = 2 hoặc x = 4
Bài 1 :
VD tập hợp M có 4 tập hợp con có 1 phần tử là
{ 1 } ; { 2 } ; { 3 } ; { 4 }
\(\rightarrow\) Tập hợp M có số tập con có 3 phần tử là
{ 1 ; 2 ; 3 } ; { 1 ; 2 ; 4 } ; { 1 ; 3 ; 4 } ; { 2 ; 3 ; 4 }
\(\Rightarrow\) Tập hợp M có 4 tập hợp con có 3 phần tử
Bài 2 :
A = { 13 ; 14 }
hoặc A = { 13 ; 15 }
A = { 14 ; 15 }
Bài 1:
a: (x-1)(x-3)>=0
=>x-3>=0 hoặc x-1<=0
=>x>=3 hoặc x<=1
b: (x-5)(x-7)<0
=>x-5>0 và x-7<0
=>5<x<7
c: (x2-1)(x2-4)<0
=>1<x2<4
mà x là số nguyên
nên \(x\in\varnothing\)
M=\(\dfrac{1919\times171717}{191919\times1717}\) và N=\(\dfrac{18}{19}\)
Ta có :
M= \(\dfrac{1919\times171717}{191919\times1717}\)
M=\(\dfrac{19\times17}{19\times17}\)
M= 1
Mà N= \(\dfrac{18}{19}\)
Vì: 1>\(\dfrac{18}{19}\)
\(\Rightarrow\)\(\dfrac{1919\times171717}{191919\times1717}\) > \(\dfrac{18}{19}\)
\(\Rightarrow\)M > N
A=\(\dfrac{5^{12}+1}{5^{13}+1}\) và B =\(\dfrac{5^{11}+1}{5^{12}+1}\)
Ta có:
A=\(\dfrac{5^{12}+1}{5^{13}+1}\)
\(\Rightarrow\)5.A=5.\(\dfrac{5^{12}+1}{5^{13}+1}\)
=\(\dfrac{5.\left(5^{12}+1\right)}{5^{13}+1}\)
=\(\dfrac{5^{13}+6}{5^{13}+1}\)
=\(\dfrac{\left(5^{13}+1\right)+6}{5^{13}+1}\)
=\(\dfrac{5^{13}+1}{5^{13}+1}\) + \(\dfrac{6}{5^{13}+1}\)
= 1 + \(\dfrac{6}{5^{13}+1}\)
B=\(\dfrac{5^{11}+1}{5^{12}+1}\)
\(\Rightarrow\)5.B = 5.\(\dfrac{5^{11}+1}{5^{12}+1}\)
=\(\dfrac{5.\left(5^{11}+1\right)}{5^{12}+1}\)
=\(\dfrac{5^{12}+6}{5^{12}+1}\)
=\(\dfrac{\left(5^{12}+1\right)+5}{5^{12}+1}\)
=\(\dfrac{5^{12}+1}{5^{12}+1}\) + \(\dfrac{5}{5^{12}+1}\)
= 1 + \(\dfrac{5}{5^{12}+1}\)
Vì: \(5^{13}+1\) > \(5^{12}+1\)
\(\Rightarrow\) \(\dfrac{5}{5^{13}+1}\) < \(\dfrac{5}{5^{12}+1}\)
\(\Rightarrow\) 1+\(\dfrac{5}{5^{13}+1}\) < 1+\(\dfrac{5}{5^{12}+1}\)
\(\Rightarrow\) 5.A < 5.B
\(\Rightarrow\) A < b
a) Nhân cả tử và mẫu với 2.4.6...40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}\)=\(\frac{\left(1.3.5...39\right)\left(2.4.6..40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}\)
= \(\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}\)
=\(\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2.4.6...2n rồi biến đổi như câu a.
a: \(=105-96=9\)
b: =225+108=333
c: =-8x9-8x(-27)
\(=-8\left(9-27\right)=144\)
d: \(=1\cdot5+\left(-8\right)\cdot6-\left(-27\right)\cdot7=5-48+189=146\)
Câu 2:
b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)
c: \(\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{4}-\dfrac{1}{11}=\dfrac{7}{44}\)