Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
a: n(A)=2
=>P(A)=2/10=1/5
b: Nếu số bi đỏ là 0 viên thì xác suất là \(\dfrac{C^1_{10}\cdot1}{C^2_{15}}=\dfrac{2}{21}\)
Nếu số bi đỏ là 1 thì xác suất là \(\dfrac{C^1_{10}\cdot2}{C^2_{15}}=\dfrac{4}{21}\)
Nếu số bi đỏ là 2 thì xác suất là \(\dfrac{C^1_{10}\cdot1}{C^2_{15}}=\dfrac{2}{21}\)
\(P\left(A\right)=\dfrac{C_3^3}{C_{16}^3}=\dfrac{1}{560}\)
\(P\left(B\right)=\dfrac{C_{13}^3}{C_{16}^3}=\dfrac{143}{280}\)
\(P\left(C\right)=\dfrac{C_7^1.C_6^1.C_3^1}{C_{16}^3}=\dfrac{9}{40}\)
\(P\left(X\right)=\dfrac{C_7^1.C_9^3}{C_{16}^4}=\dfrac{21}{65}\)
\(P\left(Y\right)=\dfrac{C_7^2.C_9^2}{C_{16}^4}=\dfrac{27}{65}\)
Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .
● Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).
● Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.
● Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.
Suy ra số phần tử của biến cố A là 16+12+9=37.
Vậy xác suất cần tính .
Chọn B.
Gọi A:”lấy được 1 viên bi trắng, 1 viên vi đen, 1 viên bi đỏ”
Ta có n(A) = 7.6.3 = 126.
Vậy
Chọn B.
câu 1