K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(x^2-11=0\)

    \(x^2=11\)

    \(x=\sqrt{11}\).

b, \(x^2-2\sqrt{13}x+13=0\)

    \(\left(x-\sqrt{13}\right)^2=0\)

     \(x-\sqrt{13}=0\)

     \(x=\sqrt{13}.\)

c, Câu này em chưa được học ạ. Thông cảm.

27 tháng 6 2018

Câu 1) x\(^2\) - 5 = 0

\(\Leftrightarrow\)(x - \(\sqrt{5}\))(x + \(\sqrt{5}\)) = 0

\(\Leftrightarrow\)x = \(\sqrt{5}\) hoặc

x = -\(\sqrt{5}\)

Câu 2) x\(^2\) - \(2\sqrt{13}x\) +13 = 0

\(\Leftrightarrow\)(x - \(\sqrt{13}\))\(^2\) = 0

\(\Leftrightarrow\)x - \(\sqrt{13}\) = 0

\(\Leftrightarrow\)x = \(\sqrt{13}\)

Câu 3) \(\left(x+2\right)\sqrt{x-3}=0\)

\(\Leftrightarrow x=-2\) hoặc

\(x=3\)

Câu 4) Tới lúc này mình hơi lười nên bạn tự giải phương trình nhé.

Hướng dẫn: Ta biết nếu\(\sqrt{x}\) = a với a\(\ge\) 0 thì x= a\(^2\), nên ta đưa về tìm x thỏa mãn (x + \(\sqrt{x-2}\))\(^2\) = 4(x-1)

Giải phương trình này ta có x=2.

Câu 5)\(\sqrt{9-12x+4x^2}=4\)

\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4\)

\(\Leftrightarrow\left|3-2x\right|=4\)

\(\Leftrightarrow3-2x=4\) hoặc

-3 + 2x = 4

\(\Leftrightarrow\) x= -0.5 hoặc x= 3.5

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

13 tháng 3 2018

a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)

\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)

=> Phương trình có nghiệm

Ta có a + b + c = -5 +3 +2 = 0

Nên phương trình có 2 nghiệm:

x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)

b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)

\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)

Nên phương trình có nghiệm

Ta có a + b + c = 7 + 6 +(-13) = 0

Nên phương trình có 2 nghiệm:

x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)

c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)

\(\Delta\) = (-7)2 - 4 * 1 * 12= 1

Nên phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)

Vậy phương trình có 2 nghiệm x1=4 và x2=3

d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)

\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)

Nên phương trình có nghiệm

Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0

Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)

e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)

\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)

= 9 - 12m + 4m +24m = 9 + 16m

Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm

Ta có a - b + c = 3- (3-2m) +( -2m)

= 3 -3 + 2m - 2m = 0

Nên phương trình có 2 nghiệm

x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)

f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0

(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))

\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)

= 39+12\(\sqrt{3}\)

Nên phương trình có nghiệm

Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0

Phương trình có 2 nghiệm x1= -1;

x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

NV
13 tháng 4 2020

a/ \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b/ \(\Delta=9+8=17\)

Phương trình có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{3-\sqrt{17}}{4}\\x_2=\frac{3+\sqrt{17}}{4}\end{matrix}\right.\)

c/ \(\Delta=\left(2+\sqrt{3}\right)^2-8\sqrt{3}=\left(2-\sqrt{3}\right)^2\)

Phương trình có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{2+\sqrt{3}+2-\sqrt{3}}{2}=2\\x_2=\frac{2+\sqrt{3}-\left(2-\sqrt{3}\right)}{2}=\sqrt{3}\end{matrix}\right.\)

d/ \(\Delta=\left(2m-1\right)^2-4\left(m^2+m\right)=1\)

Phương trình có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)