Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thời gian đi với vận tốc 30km/giờ ít hơn thời gian đi với vận trốc 20 km/giớ là:
1 + 1 = 2 ( giờ )
Vận tốc trước so với vận tốc sau là:
30/20 = 3/2
Thời gian và vận tốc tỉ lệ nghịch với nhau.
Thời gian đi với vận tốc trước bằng 2/3 thời gian đi với vận tốc sau.
Thời gian đi với vận tốc 30km/giờ là:
2 x ( 3 – 2 ) x 2 = 4 ( giờ )
Quãng đường A - B là:
30 x 4 = 120 ( km )
Đáp số: 120 km
đúng cái nhé
3) 9h30phút-30phút=9h
Gọi x(km) là quãng đường từ A đến B (ĐK X>0)
Thời gian xe đi từ A đến B là \(\dfrac{X}{15}\)(h)
Thời gian xe đi từ B đến A là \(\dfrac{X}{12}\)(h)
Theo đề bài ta có phương trình :
\(\dfrac{x}{15}+\dfrac{x}{12}=9\)
Giải pt:\(\dfrac{X}{15}+\dfrac{x}{12}=9\Leftrightarrow\dfrac{4x}{60}+\dfrac{5x}{60}=\dfrac{540}{60}\Rightarrow4x+5x=540\Leftrightarrow9x=540\Leftrightarrow x=60\)
Vậy quãng đường từ A đến B là 60 km
\(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\Leftrightarrow15x-9x+6=45-10x+25\Leftrightarrow16x=64\Leftrightarrow x=4\)
1 14-3x=-2+5x
<=>-3x-5x = -2-14
<=> -8x =-16
<=> x =-16/-8=2
mấy bạn ơi...các phương trình trên nó bị lặp lại nhak....ptrinh day ni:
a)\(14-3x=-2+5x\)
b) \(3\times\left(5x+2\right)-x\times\left(5x+2\right)=0\)
c) \(\frac{2x}{3}+\frac{3x-1}{6}=4-\frac{x}{3}\)
d) \(\frac{3-x}{x-2}+\frac{x+1}{x+2}=\frac{3x}{x^2-4}\)
Câu 1:
\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)
\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)
\(\Leftrightarrow x=-2013\)
Câu 2:
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
\(B=3a^2-6a+2017=3a^2-6a+3+2014\)
\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(a=1\)
Lại có \(a=b=c\Rightarrow a=b=c=1\)
Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)
Câu 5:
\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)
Với \(n=1;n=2\) (*) đúng
Giả sử (*) đúng với n=k khi đó (*) thành:
\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)
Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)
Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có:
\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)
Đẳng thức cần chứng minh tương đương với:
\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)
\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)
\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)
Theo nguyên lí quy nạp ta có Đpcm
Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(t=n^2+3n\) thì ta có:
\(A=t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)
Câu 1 :
a, \(\left|3-2x\right|=4x+1\)
Với \(x\le\frac{3}{2}\)pt có dạng : \(3-2x=4x+1\Leftrightarrow-6x=-2\Leftrightarrow x=\frac{1}{3}\)( tm )
Với \(x>\frac{3}{2}\)pt có dạng : \(3-2x=-4x-1\Leftrightarrow2x=-4\Leftrightarrow x=-2\)( ktm )
Vậy tập nghiệm của phương trình là S = { 1/ }
b, \(\left|3-5x\right|=2x+1\)
Với \(x\le\frac{3}{5}\)pt có dạng : \(3-5x=2x+1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)( tm )
Với \(x>\frac{3}{5}\)pt có dạng : \(3-5x=-2x-1\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)( tm )
Vậy tập nghiệm của phương trình là S = { 2/7 ; 4/3 }
Câu 2 :
\(2021-13m\)và \(2020-13n\)
Ta có : \(m< n\Rightarrow-13m>-13n\Leftrightarrow-13n+2021>-13n+2020\)
Bài 1.
a) (3x - 2)(4x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy........................
b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\left(x\ne0;x\ne-1\right)\)
\(\Leftrightarrow\) \(\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow\) x2 + 3x + x2 + x - 2x - 2 = 2x2 + 2x
\(\Leftrightarrow\) 2x2 + 2x - 2x2 - 2x = 2
\(\Leftrightarrow\) 0 = 2 (vô lí)
Vậy phương trinh vô no
Bài 2
a) 5x - 2 < 4x + 6
\(\Leftrightarrow\) 5x - 4x < 2 + 6
\(\Leftrightarrow\) x < 8
Vậy....................
b) \(\dfrac{x-3}{5}+1>2x-5\)
\(\Leftrightarrow\) \(\dfrac{x-3+5}{5}>\dfrac{5\left(2x+5\right)}{5}\)
\(\Leftrightarrow\) x + 2 > 10x + 25
\(\Leftrightarrow\) -25 + 2 > 10x - x
\(\Leftrightarrow\) -23 > 9x
\(\Leftrightarrow\) x < \(-\dfrac{23}{9}\)
Vậy.............................
Bài 3
Goi x(km) là quãng đường AB (x>0)
Thời gian ô tô đi đến tỉnh B là: \(\dfrac{x}{40}\)(giờ)
Thời gian ô tô về tỉnh A là: \(\dfrac{x}{30}\)(giờ)
Do cả đi lẫn về mất 10h30' = \(\dfrac{21}{2}\)h nên ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{21}{2}\)
\(\Leftrightarrow\) \(\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{1260}{120}\)
\(\Leftrightarrow\) 3x + 4x = 1260
\(\Leftrightarrow\) 7x = 1260
\(\Leftrightarrow\) x = 180 (tm)
Vậy quãng đường dài 180 km
Bài 4.
A B D C H
a) Trong \(\Delta\)ABC có AD là p/giác của góc A
\(\Rightarrow\) \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) = \(\dfrac{8}{6}=\dfrac{4}{3}\)
b) Xét \(\Delta\) AHB và \(\Delta\) CAB có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\)\(\Delta\)AHB đồng dạng với \(\Delta\)CAB (1)
Xét \(\Delta\) CHA và \(\Delta\)CAB có:
\(\widehat{AHC}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{C}\) là góc chung
\(\Rightarrow\) \(\Delta\) CHA đồng dạng vs \(\Delta\)CAB (2)
Từ (1) và (2)
\(\Rightarrow\) \(\Delta\)CHA đồng dạng vs \(\Delta\)AHB
c) Trong \(\Delta\)ABC vuông tại A có:
BC2 = AB2 + AC2
= 82 + 62
= 100
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì \(\Delta\) ABH đồng dạng vs \(\Delta\)CAB (cmt)
\(\Rightarrow\) \(\dfrac{AB}{AC}=\dfrac{BH}{AB}\)
\(\Rightarrow\) BH = \(\dfrac{AB^2}{AC}\) = \(\dfrac{8^2}{6}\) = \(\dfrac{32}{3}\)
Vì \(\Delta\)CHA đồng dạng vs \(\Delta\)CAB
\(\Rightarrow\) \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\) CH = \(\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}\)
Ta có:
\(\dfrac{S_{AHB}}{S_{CHA}}=\dfrac{\dfrac{1}{2}AH.BH}{\dfrac{1}{2}AH.CH}=\dfrac{BH}{CH}=\dfrac{\dfrac{32}{3}}{\dfrac{18}{5}}=\dfrac{80}{27}\)