Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Leftrightarrow9x^2+4x-3-9x^2-12x-4>0\)
\(\Leftrightarrow-8x-7>0\)
\(\Leftrightarrow-8x>7\)\(\Leftrightarrow x< -\dfrac{7}{8}\)
0 -7/8 (
\(b,\Leftrightarrow\dfrac{4x^2-2\left(2x^2+3x\right)}{4}< \dfrac{x-1}{4}\)
\(\Leftrightarrow4x^2-4x^2-6x< x-1\)
\(\Leftrightarrow-6x-x< x-1\)
\(\Leftrightarrow-7x< -1\Leftrightarrow x>\dfrac{1}{7}\)
Vậy....
1/7 0 (
a, Xét 2 trường hợp: x+1/9<0
2x-5<0
Tự làm nốt nhé, chuyển vế mà k bít làm thì mình bó tay.
b, Tương tự câu a, nhưng chọn 1 cái âm và 2 cái còn lại dương
VD: Xét 4x-1 âm, còn lại dương
TỰ LÀM NỐT ĐI, CHUYỂN VẾ NHÉ. BẤM NÚT ĐÚNG Ở PHÍA DƯỚI ĐẤY
Xin phép bỏ biểu diễn trên trục :))
a) \(2x-1< 2\left(x-1\right)\)
\(\Leftrightarrow2x-1< 2x-2\)
\(\Leftrightarrow2x-2x< 1-2\)
\(0x< -1\)( vô lí )
Vậy bất phương trình vô nghiệm.
b) \(\frac{x-1}{3}-\frac{2+3x}{4}>\frac{1}{6}\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\left(2+3x\right)}{12}>\frac{2}{12}\)
\(\Leftrightarrow4x-4-6-9x>2\)
\(\Leftrightarrow-5x-10>2\)
\(\Leftrightarrow-5x>12\)
\(\Leftrightarrow x< \frac{-12}{5}\)
Vậy...........
a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
Ta có \(x^2+1\ge1>0\forall x\)
Để bpt < 0 => 2x( 3x - 5 ) < 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)
2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )
Vậy nghiệm của bất phương trình là 0 < x < 5/3
b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))
<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)
\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)
\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)
Xét các trường hợp
1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)
+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)
+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)
Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1
c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))
\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)
\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)
Xét hai trường hợp
1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)
Vậy nghiệm của bất phương trình là \(-18\le x< -5\)
d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
\(\Rightarrow6x-2-2x< 2x+1\)
\(\Rightarrow6x-2x-2x< 1+2\)
\(\Rightarrow2x< 3\)
\(\Rightarrow x< \dfrac{3}{2}\)
b)\(\Rightarrow4x-8\ge9x-6+4-2x\)
\(\Rightarrow4x-9x+2x\ge-6+4+8\)
\(\Rightarrow-3x\ge6\)
\(\Rightarrow x\le-2\)
1/
\(x^2-2x+1< \left(x-1\right)\left(x-4\right)\)
\(\Rightarrow x^2-2x+1< x^2-4x-x+4\)
\(\Rightarrow x^2-2x+1< x^2-5x+4\)
\(\Rightarrow x^2-x^2-2x+5x< 4-1\)
\(\Rightarrow3x< 3\)
\(\Rightarrow x< 1\)
\(\Rightarrow S=\left\{x\in R;x< 1\right\}\)