K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Dựa vào sách giáo khoa ý

13 tháng 5 2016

A B C D Cả 4 câu đều là 1 hình như thế này, chỉ có kí hiệu khác nhau, bạn tự dựa vào nội dung câu hỏi mà kí hiệu lên hình nhé.

Câu 1:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

DB= DC

=> tam giác ABD = tam giác ACD (2 cạnh góc vuông)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 2:

Chứng minh y chang câu 1

Câu 3:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

BAD = CAD

=> tam giác ABD = tam giác ACD (cạnh góc vuông_ góc nhọn)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 4:

Chứng minh giống hệt câu 3.

13 tháng 3 2016

Chỉ cần vẽ hình là thấy ngay định lí đó mà

13 tháng 5 2016

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

 = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

4 tháng 5 2019

xét tam giác AMB và tam giác AMC, có:

AB=AC

MB=MC(gt)

AM chung

=>tam giác AMB= tam giác AMC (c.c.c)

M1=M2 mà góc M1+góc M2=180 độ

=>góc M1= góc M2= góc MC=90 độ

=>AM vuông góc với BC

mà MA=MB

=>AM là đường trung trực của tam giác ABC

Yên tâm đi chắc chắn đúng

23 tháng 9 2019

Giải bài 52 trang 79 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC, có:

      HB = HC

      AH: cạnh chung

Nên ∆HAB = ∆HAC (hai cạnh góc vuông)

⇒ AB = AC (hai cạnh tương ứng)

Vậy ∆ABC cân tại A.

19 tháng 4 2017

Hướng dẫn:

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

ˆH1=ˆH2H1^=H2^ = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

19 tháng 4 2017

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

ˆH1=ˆH2H1^=H2^ = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

12 tháng 4 2016

Trả lời: sgk/73 tập 2

25 tháng 4 2017

CÂU TRẢ LỜI NÀY BUỒN CƯỜI QUÁ ĐI

25 tháng 3 2021

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

5 tháng 6 2021

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

HOK T ~

5 tháng 6 2021

A B C H

Xét tam giác ABH và tam giác ACH có 

\(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}\left(=90^{\text{o}}\right)\\BH=CH\\AH\text{ chung }\end{cases}\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)}\)

=> AB = AC (cạnh tương ứng) 

=> Tam giác ABC cân tại A 

10 tháng 4 2018

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.