Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có : \(\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{a}{c}=\frac{2}{5}\\2a-b+c=7\end{cases}\) \(\Leftrightarrow\begin{cases}b=2a\\a=\frac{2}{5}c\\b-b+c=7\end{cases}\) \(\Leftrightarrow\begin{cases}b=2a\\a=\frac{2}{5}c\\c=7\end{cases}\) \(\Leftrightarrow\begin{cases}a=\frac{14}{5}\\b=\frac{28}{5}\\c=7\end{cases}\)
b. \(\begin{cases}2c=4a\\2b=3a\\a^2-b^2+2c^2=108\end{cases}\) \(\Leftrightarrow\begin{cases}c=2a\\b=\frac{3}{2}a\\a^2-b^2+2c^2=108\end{cases}\) \(\Leftrightarrow\begin{cases}c=2a\\b=\frac{3}{2}a\\a^2-\left(\frac{3}{2}a\right)^2+2\left(2a\right)^2=108\left(1\right)\end{cases}\)
Giải (1) ta có : a=4 hoặc a = -4
Với a=4 thì : \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Với a=-4 thì : \(\begin{cases}a=-4\\b=-6\\c=-8\end{cases}\)
a)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)
c)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)
\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)
Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)
\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)
\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)
=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)
b)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b. Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k => a=bk; c=dk
Vế trái =\(\frac{a^2}{b^2}\)=\(\frac{b^2k^2}{b^2}\)=\(k^2\)(1)
Vế phải =\(\frac{a^2-ac}{b^2-bd}\)=\(\frac{b^2k^2-bk.dk}{b^2-bd}\)=\(\frac{k^2\left(b^2-bd\right)}{b^2-bd}\)=\(k^2\)(2)
từ (1) và (2) ta có\(\frac{a^2}{b^2}\)=\(\frac{a^2-ac}{b^2-bd}\)
b.Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k => a=bk; c=dk
Vế trái =\(\frac{5a+5b}{5b}\)=\(\frac{5bk+5b}{5b}\)=\(\frac{5b\left(k+1\right)}{5b}\)=k+1(1)
Vế phải =\(\frac{c^2+cd}{cd}\)=\(\frac{d^2.k^2+d^2.k}{d^2.k}\)=\(\frac{d^2.k\left(k+1\right)}{d^2.k}\)=k+1(2)
từ (1) và (2) ta có\(\frac{5a+5b}{5b}\)=\(\frac{c^2+cd}{cd}\)