Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆ADB và ∆ ACD có:
\(\widehat{B}\) =\(\widehat{C}\)(gt) (1)
\(\widehat{A1}\)=\(\widehat{A2}\)(AD là tia phân giác)
Nên \(\widehat{D1}\)=\(\widehat{D2}\)
AD cạnh chung.
Do đó ∆ADB=∆ADC(g.c.g)
b) ∆ADB=∆ADC(câu a)
Suy ra AB=AC .
a Xét \(\Delta ADB\) và \(\Delta ADC\) có :
AD : cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (gt)
Ta có : \(\widehat{BDA}+\widehat{DAB}+\widehat{ABD}=\widehat{CDA}+\widehat{DAC}+\widehat{ACD}\)
\(\Rightarrow\widehat{BDA}=\widehat{CDA}\)
\(\Rightarrow\Delta ADB=\Delta ADC\) (g . c . g)
b Vì \(\Delta ADB=\Delta ADC\)
\(\Rightarrow\) AB = AC
A B C H D E
a,Vì tam giác ABC có \(\widehat{B}=\widehat{C}\)nên\(\Rightarrow\)Tam giác ABC là tam giác cân
\(\Rightarrow AB=AC\)
b,
Xét tam giác ABD và tam giác ACE có
\(AB=AC\)
\(\widehat{B}=\widehat{C}\)
\(AD=AE\)
\(\Rightarrow\)Tam giác ABD=Tam giác ACE(C-G-C)
c.Xét tam giác ACD và tam giác ABEcó
\(AC=AB\)
\(\widehat{B}=\widehat{C}\)
\(AD=AE\)(vì 2 tam giác ABD=tam giác ACE)
\(\Rightarrow\)Tam giác ACD=Tam giác ABE(c-g-c)
Bạn nhớ viết hết bằng kí hiệu nha
Hướng dẫn bạn làm nhé, bài này cũng đơn giản thôi :P
a/ \(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ \(\Delta AHD=\Delta AKD\left(canhhuyen...gocnhon\right)\)
\(\Rightarrow HD=KD\)
c/ tự làm
A B C D H 1 2 1 2 1
\(a,\widehat{ABC}=60^o\)( theo đề bài )
\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(BD\)là cạnh chung \(\left(1\right)\)
\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)) \(\left(2\right)\)
Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)
\(=180^o-30^o-90^o=60^o\)
\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)
\(=180^o-30^o-90^o=60^o\)
\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)
Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)
\(c,\)Không có điểm \(K\)
*Sửa đề 1 : a) CM Tam giác ADC = Tam giác ADB
a) Xét tam giác ADC và tam giác ADB có :
AC = AB ( gt )
^CAD = ^BAD ( AD là phân giác của ^A )
AD chung
=> Tam giác ADC = tam giác ADB ( c.g.c )
b) Tam giác ADC = tam giác ADB
=> ^ABD = ^ACD ( hai góc tương ứng )
* Hoặc : Tam giác ABC có AB = AC
=> Tam giác ABC cân tại A
=> ^ABD = ^ACD ( hai góc ở đáy )
2. Tam giác ABC có ^A = 900
=> Tam giác ABC vuông tại A
Áp dụng định lí Pytago cho tam giác vuông ABC ta có :
BC2 = AC2 + AB2
=> \(AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5cm\)