Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3
Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)
Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)
\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)
\(\Leftrightarrow m^2-10-15=0\)
\(\Delta=b^2-4ac=100+60=160\)
\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)
Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài
\(a=\frac{1}{2};b=-2;c=m-1\)
\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)
\(\Delta=4-2\left(m-1\right)\)
\(\Delta=4-2m+2\)
\(\Delta=6-2m\)
để pt có 2 nghiệm phân biệt thì \(6-2m>0\)
\(< =>m< 3\)
áp dụng vi - ét
\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)
\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)
\(\left(2m-2\right)\left(6-2m\right)+48=0\)
\(12m-12-4m^2+4m+48=0\)
\(-4m^2+16m+36=0\)
\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)
\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)
\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)
vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
\(x^2m-2\left(m-1\right)x+m+1=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=4m+4\)
Để phương trình có 2 nghiệm phân biệt
\(\Rightarrow\Delta>0\Leftrightarrow m>-1\)
Theo định lý Viet
\(\Rightarrow\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1.x_2=\frac{m+1}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left[\frac{2\left(m-1\right)}{m}\right]^2\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^2+x_2^2+2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}\left(1\right)\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
Xét phương trình ( 1 )
\(pt\left(1\right)\Leftrightarrow16+\frac{2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{16m+2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{18m+2}{m}=\frac{4\left(m^2-2m+1\right)}{m^2}\)
\(\Leftrightarrow m^2\left(18m+2\right)=4m\left(m^2-2m+1\right)\)với m khác 0
\(\Leftrightarrow m\left(18m+2\right)=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow18m^2+2m=4m^2-8m+4\)
\(\Leftrightarrow14m^2+10m-4=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=324\)
\(\Rightarrow\hept{\begin{cases}m_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-10+\sqrt{324}}{28}\\m_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-10-\sqrt{324}}{28}\end{cases}}\)
Do \(m>-1\)
\(\Rightarrow m=\frac{-10+\sqrt{324}}{28}\)
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)
Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)
suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).
Ta có: \(x_1=m-1\), \(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).
Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).
\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).
Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).
\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)
Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.
Mình chỉnh sửa lại một chút nhé.
\(A=1-\dfrac{24}{m^2+2}\)
\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)
Vậy...