Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = kx => y = 1/4 . x
a) y = f(x) = -5
mà y = 1/4 . x
=> x = -5 : 1/4 = -20
Công thức hàm số: y= \(\frac{1}{2}\).x
a. y= f(x)=\(\frac{1}{2}\).x= -5 => x = -10
b. y=f (x)= \(\frac{1}{2}x\)
=> f(x1)= \(\frac{1}{2}x1\)
f(x2)= \(\frac{1}{2}x2\)
mà x1 > x2=> \(\frac{1}{2}x1>\frac{1}{2}x2\) =>f (x1)>f(x2)
y=f(x)=5x2 -4
a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x) ; vì (-x)2 =x 2
b) x1<x2<0 => x1+x2<0 và x1 - x2 <0
f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2) >0 ( theo trên)
=> f(x1) > f(x2)
a) Ta có :
f(x1) - f(x2) = -5x1 - ( -5x2 ) = -5 . ( x1 - x2 ) > 0
\(\Rightarrow\)f(x1) > f(x2)
b) f(x1+4x2) = -5 . ( x1 + 4x2 ) = -5x1 + 4 . ( -5x2 ) = f(x1) + 4.f(x2)
c) -f(x) = - ( -5x ) = 5x
f(-x) = -5 . ( -x ) = 5x
Vậy -f(x) = f(-x)
\(f\left(x_1+4x_2\right)=-3\left(x_1+4x_2\right)=-3x_1+4.\left(-3x_2\right)\)\(=f\left(x_1\right)+4f\left(x_2\right)\).
Xác định hàm số f(x) thoả mãn các điều kiện : f(0) = 0=> hàm số có dạng f(x)=ax; f(2) = 2016 và f(x1)/x1=f(x2)/x2 với x1 và x2 là hai giá trị bất kì khác 0 của x => 2006/2= ax2/x2=>2006x2=2ax2=>a=2006:2=1003 =>a=1003