K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Các hàm số y = f(x) = 2/3 x và y = g(x) = 2/3 x + 3 là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

25 tháng 7 2018

a) Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x\)

Ta có : \(f\left(-2\right)=\dfrac{2}{3}.\left(-2\right)=-\dfrac{4}{3}\)

\(f\left(-1\right)=\dfrac{2}{3}.\left(-1\right)=-\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{2}{3}.0=0\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

\(f\left(1\right)=\dfrac{2}{3}.1=\dfrac{2}{3}\)

\(f\left(2\right)=\dfrac{2}{3}.2=\dfrac{4}{3}\)

\(f\left(3\right)=\dfrac{2}{3}.3=2\)

b) Cho hàm số : \(y=g\left(x\right)=\dfrac{2}{3}x+3\)

\(g\left(-2\right)=\dfrac{2}{3}.\left(-2\right)+3=\dfrac{5}{3}\)

\(g\left(-1\right)=\dfrac{2}{3}.\left(-1\right)+3=\dfrac{7}{3}\)

\(g\left(0\right)=\dfrac{2}{3}.0+3=3\)

\(g\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}+3=\dfrac{10}{3}\)

\(g\left(1\right)=\dfrac{2}{3}.1+3=\dfrac{11}{3}\)

\(g\left(2\right)=\dfrac{2}{3}.2+3=\dfrac{13}{3}\)

\(g\left(3\right)=\dfrac{2}{3}.3+3=5\)

c) Khi \(x\)lấy cùng một giá trị thì giá trị của \(g\left(x\right)\) lớn hơn giá trị của \(f\left(x\right)\)\(3\) đơn vị.

a: f(1)=-1,5

f(2)=-6

f(3)=-13,5

=>f(1)>f(2)>f(3)

b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)

f(-2)=-1,5x4=-6

f(-1)=-1,5x1=-1,5

=>f(-3)<f(-2)<f(-1)

c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0

bn co sai de ai khong z

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

4 tháng 4 2017

a) Vẽ đồ thị hàm số y = x2.

b) Ta có y = f(x) = x2 nên

f(-8) = (-8)2 = 64; f(-1,3) = (-1,3)2 = 1,69; f(-0,75) = (-0,75)2 = 0,5625; f(1,5) = 1,52 = 2,25.

c) Theo đồ thị ta có:

(0,5)2 ≈ 0,25

(-1,5)2 ≈ 2,25

(2,5)2 ≈ 6,25

d) Theo đồ thị ta có: Điểm trên trục hoành √3 thì có tung độ là y = (√3)2 = 3. Suy ra điểm biểu diễn √3 trên trục hoành bằng 1,7. Tương tự điểm biểu diễn √7 gồm bằng 2,7.



NM
2 tháng 9 2021

để \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}=1\)

thì \(\left(\sqrt{3}-\sqrt{5}\right)x=1-\sqrt{5}-\sqrt{3}\)

\(\Leftrightarrow x=\frac{1-\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}\)

b.\(f^2\left(x\right)=\left[\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\right]^2=8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\left[\left(\sqrt{3}-\sqrt{5}\right)x+2\sqrt{5}+2\sqrt{3}\right]\left(\sqrt{3}-\sqrt{5}\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2\left(\sqrt{3}+\sqrt{5}\right)x}{\left(\sqrt{3}-\sqrt{5}\right)x}\end{cases}}\)

26 tháng 12 2018

a, P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(P=\dfrac{-\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x\)b,x=\(7-4\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
Thay vào ta có \(P=\sqrt{\left(4-\sqrt{3}\right)^2}-\left(7-4\sqrt{3}\right)\)
\(P=\left|4-\sqrt{3}\right|-7-4\sqrt{3}=4-\sqrt{3}-7+4\sqrt{3}\)
\(P=-3+3\sqrt{3}\)

13 tháng 12 2022

Câu 2:

a: f(1)=2

=>m-1+2m-3=2

=>3m=6

=>m=2

=>f(x)=x+1

=>f(2)=2+1=3

b: f(-3)=0

=>-3m+3+2m-3=0

=>m=0

=>f(x)=-x-3

=>f(x) nghịch biến