K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Ai ra tay giúp em với ạ.

15 tháng 3 2016

câu 1

a)C1:denta

x^2 +5x+4 =0 

<=>52-4(1.4)=9

\(\Leftrightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-5\pm\sqrt{9}}{2}\)

=>x=-4 hoặc -1

C2:vi ét

tổng các nghiệm x1+x2=\(-\frac{b}{a}=-5\)

tích các nghiệm x1*x2=\(\frac{c}{a}=4\)

=>x=-4 hoặc -1

Câu 1:(2 điểm):a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))Câu 2:(1.5 điểm):Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5Câu 3:(1.5 điểm):Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*Câu 4:(2,5 điểm):Cho ABC nhọn, ba...
Đọc tiếp

Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017
b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))
Câu 2:(1.5 điểm):
Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr IH/AI=HD/AD
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr AI/ID+BI/IE+CI/IF>=6
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr (x^2-z^2)/(y+z) + (z^2-y^2)/(x+y) + (y^2-x^2)/(x+z) >=0
CÁC AE GIÚP EM VỚI (ĐANG GẤP).

2
23 tháng 9 2017

cho hình vẽ đi

không có hình vẽ

=> Ta không trả lời được

23 tháng 9 2017

Bạn ko cần thiết làm bài hình đâu, bạn chỉ cần làm 1 trong 6 bài là đc !

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

bài 1:Giải các phương trình và hệ phương trình sau: a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16 b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x) c)x^2-x-4=2 căn(x-1)(1-x) d)x^3+xy^2-10y=0,x62=6y^2=10 e)x văn(2x-3)=3x-4 f)x+y+1/y=9/x, x+y-4/x=4y/x^2 Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức: T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c) bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau...
Đọc tiếp

bài 1:Giải các phương trình và hệ phương trình sau:
a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16
b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x)
c)x^2-x-4=2 căn(x-1)(1-x)
d)x^3+xy^2-10y=0,x62=6y^2=10
e)x văn(2x-3)=3x-4
f)x+y+1/y=9/x, x+y-4/x=4y/x^2
Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức:
T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c)
bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau đây:15b^2+20b+6=0,ab khác 1.15b^2+20b+6=0;ab khác 1.CMR:b^2/(ab^2-9(ab+1)^3)=6/2015
Bài 4: Tìm giá trị nhỏ nhất của hàm số:f(x)=|x-1|+2|x-2|+3|x-3|+4|x-4|
Bài 5: Cho 3 số thực dương x,y,z thỏa mãn:1/x^2+1/y^2+1/z^2=1. Tìm giá trị nhỏ nhất của biểu thức:
P=y^2z^2/x(y^2+z^2)+z^2x^2/y(z^2+x^2)+x^2y^2/z(x^2+y^2)
Bài 6:Tìm nghiệm nguyên của phương trình:x^2-2y(x-y)=2(x+1)
Bài 7:Cho ba số thực x,y,z thỏa mãn điều kiện:x+y+z=0, và xyz khác 0. Tính giá trị biểu thức:x^2/(y^2+z^2-x^2)+y^2/(z^2+x^2-y^2)+z^2/(x^2+y^2-z^2)
bài 8:Tìm các cặp số nguyên (x,y) thỏa mãn:2015(x^2+y^2)-2014(2xy+1)=25

@Akai Haruma

@học tốt toán lý hóa

@Toán ơi ta yêu toán lắm!

@Toán 9

@Người Đã từng là quán quân Toán quốc gia

@Yêu Toán

@Quản Trị Toán

0
4 tháng 6 2017
  1. có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\)   nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
4 tháng 6 2017

Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)

Cộng theo vế 2 BĐT trên có:

\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Bài 2: Áp dụng BĐT AM-GM ta có:

\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(\le2+\left(x-1\right)+\left(3-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:

\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)

Từ (1);(2) xảy ra khi 

\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)

Vậy x=2 là nghiệm của pt

a)\(x^2-\left(m+2\right)x+m=0\)

(a=1;b=-(m+2);c=m)

Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)

\(=\left(m+2\right)^2-4m\)

\(=m^2+2m.2+2^2-4m\)

\(=m^2+4m+4-4m\)

\(=m^2+4\)

\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)

Vậy pt luôn có nghiện với mọi m

b,Xét hệ thức vi-ét,ta có:

\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)

Theo đề bài ,ta có:

 \(x_1+x_2-3x_1x_2=2\)

\(\Leftrightarrow m+2-3m=2\)

\(\Leftrightarrow-2m+2=2\)

\(\Leftrightarrow-2m=2-2\)

\(\Leftrightarrow m=0\)[t/m(1)]

Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho

12 tháng 5 2021

a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)

\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)