Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a3 + b3 + c3 – 3abc
Ta sẽ thêm và bớt 3a2b +3ab2 sau đó nhóm để phân tích tiếp
a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)
= (a + b)3 +c3 – 3ab(a + b + c)
= (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
= (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
2) x5 – 1
Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm:
x5 – 1 = x5 – x + x – 1
= (x5 – x) + (x – 1)
= x(x4 – 1) + ( x – 1)
= x(x2 – 1)(x2 + 1) + (x - 1)
= x(x +1)(x – 1)(x2 + 1) + ( x – 1)
= (x – 1)[x(x + 1)(x2 + 1) + 1].
3) 4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
f/=>n thuộc ƯC(48,92,136) và n nhỏ nhất
48=24.3
92=22.23
136=23.17
=>UCLN(136;48;92)=22=4
=>n thuộc Ư(4)={-4;-2;-1;1;2;4}
=>n=-4
Ta có : \(17a+13b+9c⋮7\Rightarrow\left(14a+3a\right)+\left(7b+6b\right)+9c⋮7\)
\(\Rightarrow\left(3a+6b+9c\right)+\left(14a+7b\right)⋮7\)
\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\)
Vì : \(3\in\) N* ; \(a+2b+3c⋮7\Rightarrow3\left(a+2b+3c\right)⋮7\)
Mà : \(7\left(2a+b\right)⋮7\)
\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\Rightarrow17a+13b+9c⋮7\)
Câu 1:
\(C=4+2^2+2^3+...+2^{20}\)
\(\Rightarrow2C-C=\left(8+2^2+2^3+2^4+...+2^{101}\right)-\left(4+2^2+2^3+...+2^{20}\right)\)
\(\Rightarrow C=1+2^{21}\)
\(C=2^{11n-1}\Leftrightarrow n=2\)
Câu 2:
\(2^{100}=\left(2^{10}\right)^{10};10^{30}=\left(2^3\right)^{10}\)
\(\Rightarrow10=10\Leftrightarrow2^{10}>2^3\Leftrightarrow2^{100}>10^{30}\)
\(\Rightarrow D>10^{30}\)
Ta lại so sánh:
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}< 1100^{10}\left(=\left(11.100\right)^{10}=11^{10}.10^{20}< 10^{11}.10^{20}=10^{31}\right)\)
\(\Rightarrow10^{30}< 2^{100}< 2^{31}\)
Mà \(10^{30}\)là số nhỏ nhất có 31 chữ số.
\(10^{31}\) là số nhỏ nhất có 32 chữ số.
\(\Rightarrow2^{100}\) viết trong hệ thập phân có 31 chữ số.
Câu 1 : Ta có : \(C=4+2^2+2^3+.....+2^{20}\)
\(\Rightarrow2C=8+2^3+2^4+....+2^{21}\)
\(\Rightarrow2C-C=8+2^{21}-4-2^2\)
\(\Rightarrow C=2^{21}\)
Suy ra : 11n - 1 = 21
=> 11n = 22
=> n = 2
a) A = 1 + 3 + 32 + .... + 311
= (1+3+32 ) + ( 33 + 34 + 35) + ..... + (39 + 310 + 311)
= 13 + 33 . 13 + .... + 39 . 13
= 13 . (1+ 33 +....+ 39)
=> A chia hết cho 13
b) B = 165 + 215
= 220 +215
= 215 . 25 + 215
= 215 . ( 25 + 1)
= 215 .33
=> B chia hết cho 33
c) C= 5 + 52 + 53 + .....+ 58
= (5 + 52) + (53 + 54) +....+ ( 57 + 58)
= 30 + 52 (5 + 52) + ....+ 56 ( 5 + 52)
= 30 + 52 . 30 + .....+ 56 . 30
= 30. ( 1+ 52 +....+ 56 )
=> C chia hết cho 30
d) D= 45 + 99+ 180 chia hết cho 9
Do 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
=> 45 + 99 + 180 chia hết cho 9
e) E = 1+ 3 + 32 + 33 + ......+ 3199
= (1+3+32) + (33 + 34 + 35) +......+ (3197 + 3198 + 3199)
= 13 + 33 (1+3+32) +.......+ 3197(1+3+32)
= 13 + 33 . 13 + ..... + 3197 .13
= 13. ( 1+ 33 +....+ 3197)
=> E chia hết cho 13
f)
Ta có: 1028 + 8 = 100...08 (27 chữ số 0)
Xét 008 chia hết cho 8 => 1028 + 8 chia hết cho 8 (1)
Mà 1+27.0+ 8 = 9 chia hết cho 9 => 1028 + 8 chia hết cho 9 (2)
Mà (8,9) =1 (3)
Từ (1); (2); (3) => 1028 + 8 chia hết cho (8.9)= 72
g)
ta có: G= 88 + 220 = (23)8 + 220 = 224 + 220 = 220 . 24 + 220 = 220 . (24 + 1) = 220 . 17
=> G chia hết cho 17
a) A = 1 + 3 + 3^2 + ... + 3^11
A = ( 1 + 3 + 3^2 ) + ... + ( 3^9 + 3^10 + 3^11 )
A = 1(1 + 3 + 3^2 ) + ... + 3^9 ( 1 + 3 + 3^2 )
A = 1 . 13 + ... + 3^9 . 13
A = 13 ( 1 + ... + 3^9 ) chia hết cho 13
còn mấy ý kia bạn chỉ cần tách nhóm rồi làm tương tự là ok
Good luck
A = ( 2 + 2\(^2\)) + ( 2\(^2\)+ 2\(^3\)) + ...+ ( 2\(^{49}\)+ 2\(^{50}\))
A = 2 (1+2) + 2\(^2\)(1+2) + .....+ 2\(^{49}\)(1+2)
A = ( 1+2 )(2+2\(^2\)+.....+2\(^{49}\))
A = 3(2+2\(^2\)+.....+2\(^{49}\)) \(⋮\)3