Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Gọi d là \(ƯCLN\left(a^2+a-1;a^2+a+1\right)\) nên :
\(\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\) \(\Leftrightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)=2⋮d\Rightarrow d=\left\{\pm1;\pm2\right\}\)
Mà \(a^2+a+1=a\left(a+1\right)+1\) do \(a\left(a+1\right)\) là tích 2 số nguyên liên tiếp
=> \(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)+1\) ko chia hết cho 2 hay \(d\ne\pm2\)
\(\Rightarrow d=\pm1\) hay \(\frac{a^2+a-1}{a^2+a+1}\) tối giản (đpcm)
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2\left(a+1\right)}{a^3-a^2+a+a^2-a+1+2a^2+2a}\)
\(=1-\frac{2\left(a+1\right)}{a\left(a^2-a+1\right)+\left(a^2-a+1\right)+2a\left(a+1\right)}=1-\frac{2\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=1-\frac{2\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}=1-\frac{2}{a^2+a+1}\)
- a lẻ => a2 + a + 1 lẻ => A tối giản
- a chẵn => a2 + a + 1 lẻ => A tối giản
\(a^3+2a^2-1=a^2\left(a+1\right)+a\left(a+1\right)-\left(a+1\right)\)=(a^2+a-1)(a+1)
tương tự mẫu là (a+1)(a^2+a+1)
=> Rút gọn được \(\frac{a^2+a-1}{a^2+a+1}\)