Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:
Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.
C/m C'AIC là hcn=> Góc BAD = 90 độ
=> CC'= AI
Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx
=> I là trung điểm của AD=> 2AI=AD
=> 2CC'=AD.
=> AB2+ AD2= BD2( Đlí PTG)
Ta có: Với 3 điểm B,C,D thì sẽ luôn có: (BD+CD)2>= BD2
Có: AB2+ AD2=BD2
=> (BD+CD)2>= AB2+ AD2
=> (BD+CD)2>= AB2+ (2CC')2
=> (BD+CD)2>= AB2+ 4CC'
=> (BD+CD)2- AB2>= 4CC'(1)
CMTT=> (AB+AC)2-BC2>= 4AA'(2)
và (AB+BC)2- AC2>= 4BB'(3)
Từ (1),(2) và (3) ta chứng minh đc:
(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)
=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC
=> GTNN là 4 khi tam giác ABC đều.
Câu 1 bạn cộng vào A 4 đơn vị còn mỗi phân thức bên vế phải thì cộng mỗi cái bàng một đơn vị, sau đó sẽ có 2 phân thức tử bằng a+b và 2 phân thức tử bằng c+d, bạn đặt ra ngoài làm nhân tử chung, bên trong ngoặc sẽ là 1/a+b + 1/b+c, bạn áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b sẽ được bên trong ngoặc là 4/a+b+c+d, nhân 2 cái ở ngoài vào, rút gọn phân thức đi sẽ được kết quả là A+4 >= 4 nên A>=0