K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Ta có: \(\frac{a}{b}=\frac{1}{2}\)

\(\Leftrightarrow a=\frac{b}{2}\)

hay b=2a

Ta có: \(P=\frac{3a+b}{b-a}=\frac{3\cdot a+2a}{2a-a}=\frac{5a}{a}=5\)

Vậy: P=5

Câu 2:

Vì trong tam giác 1cm+7cm>a

nên \(a< 8\)

\(\Leftrightarrow a\in\left\{1;2;3;4;5;6;7\right\}\)

Vậy: \(a\in\left\{1;2;3;4;5;6;7\right\}\)

30 tháng 6 2020

a=7 nha !! nhầm !

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.

28 tháng 7 2018

Bài 1:

a) \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=\frac{1}{3}\cdot\frac{2013}{4030}=\frac{671}{4030}\)

Bài 2:

ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)

\(=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

Bài 3:

a) f(1) = 4/1 = 4

=> f(1) = 4

g(-1) = (-1)^2 = 1

=> g(-1) = 1

h(-5) = -2.(-5)^2 - 5/(-5) = -2.25 + 1 = -50 + 1 = -49

=> h(-5) = -49

b) ta có: k(x)=f(x)+g(x)+h(x)

=> k(x) = 4/x + x^2 -2x^2 - 5/x

k(x) = - (5/x - 4/x) - (2x^2-x^2)

k(x) = -1/x - x

\(k_{\left(x\right)}=\frac{-1}{x}-\frac{x.x}{x}=\frac{-1-x^2}{x}\)

c) Để k(x) = 0

=> -1-x^2/x = 0 ( x khác 0)

=> -1-x^2 = 0

=> x^2 = -1

=> không tìm được x

Bài 4:

a) Xét tam giác ABC vuông tại A

có: góc B + góc C = 90 độ ( 2 góc phụ nhau)

thay số: 60 độ + góc C = 90 độ

góc C = 90 độ - 60 độ

góc C = 30 độ

=> AB = BC/2 ( cạnh đối diện với góc 30 độ)

thay số: 5 = BC/2

=> BC = 5.2

=> BC = 10 cm

Xét tam giác ABC vuông tại A

có:  AC^2 + AB^2 = BC^2 ( py - ta - go)

thay số: AC^2 + 5^2 = 10^2

         AC^2 + 25 = 100

AC^2 = 75

\(\Rightarrow AC=\sqrt{75}\) cm

1. Với x nguyên, giá trị lớn nhất của \(B=\frac{4x+3}{-2x+1}\)là ?2. Tam giác ABC vuông tại A có BC = 30 cm và AB : AC = 3:4. Khi đó AB bằng ?3. Tìm số tự nhiên a biết 12; 20; a là độ dài các cạnh của 1 tam giác vuông ?4. Giá trị nhỏ nhất của A = giá trị tuyệt đối của  -x = 7/3 + giá trị tuyệt đối -x -11/3 - cho 17 là ?5. Cho 3 số x,y,z khác 0 thõa mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)....
Đọc tiếp

1. Với x nguyên, giá trị lớn nhất của \(B=\frac{4x+3}{-2x+1}\)là ?

2. Tam giác ABC vuông tại A có BC = 30 cm và AB : AC = 3:4. Khi đó AB bằng ?

3. Tìm số tự nhiên a biết 12; 20; a là độ dài các cạnh của 1 tam giác vuông ?

4. Giá trị nhỏ nhất của A = giá trị tuyệt đối của  -x = 7/3 + giá trị tuyệt đối -x -11/3 - cho 17 là ?

5. Cho 3 số x,y,z khác 0 thõa mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Khi đó \(B=\left(1=\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)\)có giá trị bằng ?

6. Trong mặt phẳng tọa độ Oxy, vẽ điểm A(-3;4). Khoảng cách từ A đến gốc tọa đọ bằng ?

7. Tìm các số tự nhiên x, y biết  \(2^{x+11}.3^y=36^x\).

8. Tìm các số nguyên tố x,y sao cho \(x^2-2y^2=1\).

9.  Cho tam giác ABC vuông tại A; đường cao AH. Biết BH = 9 cm, CH = 16 cm. Tính độ dài AH.

10. Cho a,b,c > 0.

So sánh \(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1.

 

0
1. Với x nguyên, giá trị lớn nhất của \(B=\frac{4x+3}{-2x+1}\)là ?2. Tam giác ABC vuông tại A có BC = 30 cm và AB : AC = 3:4. Khi đó AB bằng ?3. Tìm số tự nhiên a biết 12; 20; a là độ dài các cạnh của 1 tam giác vuông ?4. Giá trị nhỏ nhất của A = giá trị tuyệt đối của  -x = 7/3 + giá trị tuyệt đối -x -11/3 - cho 17 là ?5. Cho 3 số x,y,z khác 0 thõa mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)....
Đọc tiếp

1. Với x nguyên, giá trị lớn nhất của \(B=\frac{4x+3}{-2x+1}\)là ?

2. Tam giác ABC vuông tại A có BC = 30 cm và AB : AC = 3:4. Khi đó AB bằng ?

3. Tìm số tự nhiên a biết 12; 20; a là độ dài các cạnh của 1 tam giác vuông ?

4. Giá trị nhỏ nhất của A = giá trị tuyệt đối của  -x = 7/3 + giá trị tuyệt đối -x -11/3 - cho 17 là ?

5. Cho 3 số x,y,z khác 0 thõa mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Khi đó \(B=\left(1=\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)\)có giá trị bằng ?

6. Trong mặt phẳng tọa độ Oxy, vẽ điểm A(-3;4). Khoảng cách từ A đến gốc tọa đọ bằng ?

7. Tìm các số tự nhiên x, y biết  \(2^{x+11}.3^y=36^x\).

8. Tìm các số nguyên tố x,y sao cho \(x^2-2y^2=1\).

9.  Cho tam giác ABC vuông tại A; đường cao AH. Biết BH = 9 cm, CH = 16 cm. Tính độ dài AH.

10. Cho a,b,c > 0.

So sánh \(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1.

1
4 tháng 3 2016

1. B = 3

 2.AB = 18

3. a= 16

4.A = -11

5. B = 8

6. A = 5

7.x= 1 ; y=2

8, x= 3; y= 2

9 . AH = 12

10. M > 1 

Câu 1. Tính \(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left(19-2\frac{2}{3}\cdot4\frac{3}{4}\right)\)Câu 2. Cho \(\frac{a}{c}=\frac{c}{b}\). Chúng minh rằng:a) \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)b) \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)Câu 3. Tìm x biết:a) \(\left|x+\frac{1}{5}\right|-4=-2\)b) \(-\frac{15}{12}\cdot x+\frac{3}{7}=\frac{6}{5}\cdot x-\frac{1}{2}\)Câu 4. Một vật chuyển động đều trên các cạnh hình...
Đọc tiếp

Câu 1. Tính 

\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left(19-2\frac{2}{3}\cdot4\frac{3}{4}\right)\)

Câu 2. Cho \(\frac{a}{c}=\frac{c}{b}\). Chúng minh rằng:

a) \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)

b) \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)

Câu 3. Tìm x biết:

a) \(\left|x+\frac{1}{5}\right|-4=-2\)

b) \(-\frac{15}{12}\cdot x+\frac{3}{7}=\frac{6}{5}\cdot x-\frac{1}{2}\)

Câu 4. Một vật chuyển động đều trên các cạnh hình vuông. Trên 2 cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ 3 với vận tốc 4m/s, trên cạnh thứ 4 với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 3 cạnh là 59 giây.

Câu 5. Cho tam giác ABC cân tại A có góc A bằng 20 độ. Vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cát AC tại M. Chứng minh:

a) Tia AD là tia phân giác của góc BAC.

b) AM = BC

Câu 6. Tìm x, y thuộc N biết 25 - y^2 = 8 . (x - 2009)^2

Các bạn giúp mình giải bài 2b, 3b, 4, 5 và 6 là được rồi. Còn lại mình đã giải được. Ai giải đầu tiên được tick, người giải được bài 5 dù là người thứ mấy mình cũng tick. Ráng giúp mình nha!!!

 

 

 

 

0
Câu 1:a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)Câu 2:a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba...
Đọc tiếp

Câu 1:

a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)

b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

Câu 2:

a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.

b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào?

Câu 3:

Cho tam giác ABC( AB= AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM= EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

Câu 4:

Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.

Câu 5:

a) Cho a,b,c>0. Chứng tỏ rằng: M=\(\frac{a}{a+b}+\frac{b}{b+c}\frac{c}{c+a}\)không là số nguyên.

b) Cho a,b,b thoả mãn: a+b+c=0. Chứng minh rằng ab+bc+ca \(\le\)0.

Câu 6:

a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.

b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10;2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu?

Câu 7:

Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi \(\Delta APQ\) là 2. Chứng minh rằng góc PCQ bằng 45 độ. 

Ai biết làm thì giải dùm.

0
Câu 1:thực hiện tínhC=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))Câu 2:tìm xa)   (x-2)(x+3) <0b)   3x+2+4.3x+1+3x-1Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,zCâu 5:  Cho tam giác ABC...
Đọc tiếp

Câu 1:thực hiện tính

C=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))

Câu 2:tìm x

a)   (x-2)(x+3) <0

b)   3x+2+4.3x+1+3x-1

Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)

Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,z

Câu 5:  Cho tam giác ABC vuông cân tại A.Gọi D là một điểm bất kì trên cạnh BC (D khác B và C ).Vẽ hai tia Bx;Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm  A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) \(\Delta\)AMB =\(\Delta\)ADC

b) A là trung điểm của MN

c) chứng minh \(\Delta\)vuông cân

Câu 6:Cho\(\Delta\)ABC cân tại A=100 độ .Gọi M là 1 điểm nằm trong tam giác sao cho góc MBC =10 độ ;góc MCB=20 độ .Tính góc AMB

 

0