K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Câu 5:

\(1.4+2.5+...+277.280\)

\(=\left(1+2+...+277\right).\left(4+5+...+280\right)\)

Tính tổng các dãy số ta được:

\(=38503.39334\)

= \(1514477002.\)

Mình chỉ làm câu này thôi bạn.

Chúc bạn học tốt!

b)

Ta có :

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)

Lại có :

\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Tương tự, ta có 

\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\)không là số tự nhiên

k cho mình nha nha nha

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

19 tháng 2 2017

a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)

19 tháng 2 2017

c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)

+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)

12 tháng 10 2019

Bài 1:

\(A=\frac{a+b}{b+c}.\)

Ta có:

\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)

\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)

\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)

\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)

Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)

Bài 2:

a) \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow648+280=7x+9x\)

\(\Rightarrow928=16x\)

\(\Rightarrow x=928:16\)

\(\Rightarrow x=58\)

Vậy \(x=58.\)

b) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2019

Bài 2:

a, \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow9.72-9.x=7.x-7.40\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow-9x-7x=-280-648\)

\(\Rightarrow-16x=-648\)

\(\Rightarrow x=58\)

Vậy \(x=58\)

25 tháng 10 2017

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

30 tháng 7 2019

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23