K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3: 

a: \(A=\left(\dfrac{1}{x+1}-\dfrac{2}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x+1}{1}\)

\(=\dfrac{x-1-2x-2+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{1}\)

\(=\dfrac{-3}{x-1}\)

b: Khi x=1 thì A không xác định

Khi x=2 thì \(A=\dfrac{-3}{2-1}=-3\)

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0
7 tháng 12 2016

bài dễ như thế mà còn hỏi nữa

1 tháng 1 2019

Câu 1:

\(Tacó\)

\(\frac{2}{2x-1}+\frac{4x^2+1}{4x^2-1}-\frac{1}{2x+1}=\frac{2}{2x-1}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{1}{2x+1}\)

\(=\frac{4x+2}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{2x-1}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\frac{4x+2+4x^2+1-2x+1}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x\left(2x+1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x+4}{2x-1}\)

\(b,x=\frac{1}{2}\Rightarrow2x-1=0\left(loại\right)\)

..... 2 câu sau easy

Câu 1:Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số9x^2+17x+8 ≤ 2Câu 2. Giải toán bằng cách lập phương trình:Một người đi xe máy từ A đến B với vận tốc 40 km/h. Đi được 15 phút người đó gặp được ô tô từ B đến với vận tốc 50 km/h. Ô tô đến A nghỉ 15 phút rồi trở về B gặp người đi xe máy cách B 20 km. Tính quãng đường AB.Câu 3. Cho tam giác ABC có AB = 12cm , AC =...
Đọc tiếp

Câu 1:
Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
9x^2+17x+8 ≤ 2
Câu 2. Giải toán bằng cách lập phương trình:
Một người đi xe máy từ A đến B với vận tốc 40 km/h. Đi được 15 phút người đó gặp được ô tô từ B đến với vận tốc 50 km/h. Ô tô đến A nghỉ 15 phút rồi trở về B gặp người đi xe máy cách B 20 km. Tính quãng đường AB.
Câu 3. Cho tam giác ABC có AB = 12cm , AC = 16cm , BC = 20cm.
a) Chứng minh rằng: tam giác ABC vuông.
b) Trên BC lấy điểm D sao cho BD = 4cm. Từ D kẻ đường thẳng song song với BC cắt AC tại E. Tính DE, EC.
c) Tìm vị trí của D trên AB sao cho BD + EC = DE.
Câu 4. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a. Diện tích của ABCD và ABC’D’ lần có AA’ = a√2, AB = a ; A’C = 3a. Tính thể tích hình hộp chữ nhật.
Câu 5. Cho a, b, c >0. Chứng minh rằng:
4a^2+(b+c)^2/2a^2+b^2+c^2+ 4b^2+(c-a)^2/2b^2+c^2+a^2+4c^2+(a-b)^2/2c^2+a^2+b^2≥ 3

1
21 tháng 6 2020

Câu 2.

Quãng đường sau 15' của 40km/h =(15/60) x 40=10km.

Thời gian từ lúc gặp nhau đếu lúc ô tô bắt đầu từ A =>B : (10/50)+(15/60) =0.45 h.

Vậy ta có phương trình : (tôi 0 biết cái phương trình này diễn đạt sao cả , chỉ biết là nó đúng !)

0.45*40+10+40*t=50*t

t=2.8

=> Quãng đường xe máy đi từ đầu đến thời điểm cách B 20 km =2,8 x 50=140 km,

S AB = 140+20= 160km

26 tháng 8 2018

Bài 1: 

a, 10 - 4x = 2x - 3

<=> - 4x - 2x = -3 -10

<=> -6x = -13

<=> x =13/6

26 tháng 8 2018

miyano shiho bạn giúp mình nốt mấy bài cuối nha :v

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).

19 tháng 3 2018

Câu 3:

Gọi quãng đường AB là x ( km, x>0)

Thời gian lúc đi là: \(\dfrac{x}{30}h\)

Thời gian lúc về là: \(\dfrac{x}{40}h\)

45' = \(\dfrac{3}{4}h\)

Theo đề ra ta có pt:

\(\dfrac{x}{30}-\dfrac{3}{4}=\dfrac{x}{40}\)

\(\Leftrightarrow4x-90=3x\)

\(\Leftrightarrow x=90\) ( nhận)

Vậy quẵng đường AB dài 90 km

19 tháng 3 2018

\(\left(m-2\right)x+3=0\)

a. Để pt trên là pt bậc nhất 1 ẩn thì \(m-2\ne0\)=> m khác 2

b. Với m = 5 ta được:

\(\left(5-2\right)x+3=0\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow x=-1\)

Vậy m = 0 thì nghiệm của pt là x = -1

23 tháng 12 2017

Câu 1:

\(a,5x\left(x^2-3x+\dfrac{1}{5}\right)=5x^3-15x^2+x\)

\(b,\left(x-3\right)\left(2x-1\right)=2x^2-x-6x+3=2x^2-7x+3\)

Câu 2:

\(a,3x^2-15xy=3x\left(x-5y\right)\)

\(b,x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-9\)

\(=\left(x-3-3\right)\left(x-3+3\right)=x\left(x-6\right)\)

\(c,x^2+3x+2=x^2+2x+x+2=x\left(x+2\right)+\left(x+2\right)=\left(x+2\right)\left(x+1\right)\)

Câu 3:

\(M=\left(\dfrac{x-1}{x+1}-\dfrac{x-2}{x-1}\right).\dfrac{x^2-1}{x+2}\)

a, ĐKXĐ của biểu thức M là :

\(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\\x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\\x\ne-2\end{matrix}\right.\)

\(b,M=\left(\dfrac{x-1}{x+1}-\dfrac{x-2}{x-1}\right).\dfrac{x^2-1}{x+2}\)

\(=\dfrac{\left(x-1\right)^2-\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}.\dfrac{x^2-1}{x+2}\)

\(=\dfrac{x^2-2x+1-x^2+x+2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{x+2}\)

\(=\dfrac{-x+3}{x+2}\)

c, Để giá của phân thức bằng 0

\(\Leftrightarrow\dfrac{-x+3}{x+2}=0\)

\(\Leftrightarrow-x+3=0\)

\(\Leftrightarrow-x=-3\)

\(\Leftrightarrow x=3\) (t/m ĐKXĐ )

Vậy x = 3 thì giá trị của phân thức bằng 0

23 tháng 12 2017

mk tl nhầm nha bn , câu tl của mk là của câu hỏi khác của bn đấy , bn xem lại giúp mk nha , sorry bn

3 tháng 3 2020

a) ta có: \(|4x^2-1|\ge0\forall x\)

\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)

Mà \(|4x^2-1|+3x|2x-1|=0\)

=> I4x^2-1I và 3xI2x-1I=0

=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0

=> 4x^2=1 và x=0 hoặc 2x=1

=> x^2=1/4 và x=0 hoặc x=1/2

=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2

Vậy x=\(\pm\frac{1}{2}\); x=0

3 tháng 3 2020

Phạm Nhật Quỳnh

Bạn xem lại nhé x chưa chắc đã dương nha 

Câu 1.a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì...
Đọc tiếp

Câu 1.

a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1

Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì đến sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định lúc đầu.

Câu 3. Cho ABC vuông cân tại A. Trên AB lấy điểm M, kẻ BD CM, BD cắt CA ở E. Chứng minh rằng:

a) BE . DE = AE . CE

b) BD . BE + AC . EC = BC^2

c) góc ADE = 45 độ

Câu 4. Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh căn 3 và góc BAD= 60 độ . Đường thẳng qua B và giao điểm O của hai cạnh đường chéo hình thoi ABCD vuông góc mặt phẳng (ABCD). Biết BB’ = căn 3 . Tính thể tích hình hộp chữ nhật.

Câu 5. Cho x,y,z là các số thực thỏa mãn 2(y^2+yz+z^2)+3x^2=36 . Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x+y+z

1

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)ĐK : \(x\ne3;-1\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

Khử mẫu ta đc : \(x^2+x+2x^2-6x=4x\)

\(3x^2-5x-4x=0\Leftrightarrow3x^2-9x=0\Leftrightarrow x\left(3x-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\left(ktm\right)\end{cases}}\)