K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

(2x - 5)2008 + (3y + 4)2010 \(\le\) 0 

Mà (2x - 5)2008 \(\ge\) 0 ; (3y + 4)2010 \(\ge\) 0 

Nên (2x - 5)2008 = (3y + 4)2010 = 0 

=> 2x - 5 = 0 => 2x = 5 ; x = 5/2

=> 3y + 4 = 0 => 3y = -4 ; y = -4/3

Vậy x = 5/2 ; y =-4/3 

7 tháng 11 2015

Ta có: (2x-5)^2008>=0(với mọi x)

(3y+4)^2010>=0(với mọi y)

=>(2x-5)^2008+(3y+4)^2010>=0(với mọi x,y)

mà theo đề, (2x-5)^2008+(3y+4)^2010<=0

nên (2x-5)^2008+(3y+4)^2010=0

=>(2x-5)^2008=0                           và                  (3x+4)^2010=0

2x-5=0                                                              3x+4=0

2x=0+5                                                             3x=0-4

x=5/2                                                               x=4/3

Vậy x=5/2; y=4/3

15 tháng 6 2018

\(2)\) Ta có : 

\(n^{200}< 3^{400}\)

\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)

\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)

\(\Leftrightarrow\)\(n^{200}< 9^{200}\)

\(n\) lớn nhất nên \(n=8\)

Vậy \(n=8\)

Chúc bạn học tốt ~ 

15 tháng 6 2018

1) (2x-5)2008+(3y+4)2010<=0

=>2x-5=0 và 3y+4=0

=>x=5/2 và y=-4/3

2)n200<3400

=>n200<9200

=>n<9

Vậy số nguyên n lớn nhất là 8

18 tháng 5 2016

ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)  

Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0

=> (2x-5)2000+(3y+4)2002=0

=>2x-5=0 => x=2,5

=>3y+4=0=>y=\(\frac{-4}{3}\)

    

18 tháng 5 2016

Vì (2x-5)2000 > 0 với mọi x

(3y+4)2002 > 0 với mọi y

=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y

Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)

=>(2x-5)2000+(3y+4)2002=0

=>(2x-5)2000=(3y+4)2002=0

+)(2x-5)2000=0=>2x-5=0=>x=5/2

+)(3y+4)2002=0=>3y+4=0=>y=-4/3

Vậy x=5/2;y=-4/3

23 tháng 3 2020

(2x-5)2+(3y+4)4+(2z-1)8 \(\le\) 0 (1)

Có: (2x-5)2\(\ge0\forall x\); (3y+4)4\(\ge0\forall y\); (2z-1)8\(\ge0\forall z\)

\(\Rightarrow\) (2x-5)2+(3y+4)4+(2z-1)8\(\ge0\forall x,y,z\) (2)

Từ (1); (2) \(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^2=0\\\left(3y+4\right)^4=0\\\left(3z-1\right)^8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\\2z-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\\2z=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-4}{3}\\z=\frac{1}{2}\end{matrix}\right.\)

Vậy .....

24 tháng 3 2020

25 taoo viet 2=76 ra 26569

19 tháng 3 2020

Bang Xz jskksjjmdkjehjiffd

12 tháng 7 2017
a) Thôi dễ rồi

b) \(\left(3x-2\right)^5=-243\)

\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)

\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)

c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)

Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)

12 tháng 1 2020

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\)   \(\forall x,y\)

mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)  (đề bài ) \(\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)

\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)

Rút gọn biểu thức

\(m+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

=> \(m=x^2+11xy-y^2\)

Thay x,y, vừa tìm được vào biểu thức đã được rút gọn ta tính được m 

12 tháng 1 2020

Đây là bài hướng dẫn, có gì thắc mắc hãy hỏi lại!!