Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B
Ta có: un = 4+ (n - 1).3 = 3n + 1,
1 ≤ n ≤ 100
vk = 1+ (k - 1).5 = 5k - 4,
1 ≤ k ≤ 100
Để một số là số hạng chung của hai cấp số cộng ta phải có:
3n +1 = 5k - 4 ⇔3n = 5(k-1)⇒ n ⋮ tức là n = 5t.
Khi đó; 3.5t = 5(k - 1) hay 3t = k - 1 nên k =1 + 3t, t ∈ Z
Vì 1 ≤ n ≤ 100 nên 1 ≤ t ≤ 20 . Mà t ∈ Z ⇒ t ∈ 1 ; 2 ; 3 ; . . . ; 19 ; 20
Ứng với 20 giá trị của t cho 20 giá trị của n và 20 giá trị của k.
Vậy có 20 số hạng chung của hai dãy
Ta có u n = 4 + ( n − 1 ) .3 = 3 n + 1 với 1 ≤ n ≤ 100
v k = 1 + ( k − 1 ) .5 = 5 k − 4 với 1 ≤ k ≤ 100
Để một số là số hạng chung của hai cấp số cộng ta phải có
3 n + 1 = 5 k − 4 ⇔ 3 n = 5 ( k − 1 )
⇒ n ⋮ 5 tức là n = 5 t với t ∈ ℤ
Vì 1 ≤ n ≤ 100 nên 1 ≤ t ≤ 20 . Do đó có 20 số hạng chung của hai dãy số.
Chọn đáp án B
Gọi ba số đó là \(x,y,z\). Do ba số là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng nên:
\(x;y=x+7d;z=x+42d\). (Với d là công sai của cấp số cộng).
Ta có: \(x+y+z=x+x+7d+x+42d=3x+49d=217\).
Mặt khác x, y, z là các số hạng liên tiếp của một cấp số nhân nên:
\(y^2=xz\)\(\Leftrightarrow\left(x+7d\right)^2=x\left(x+42d\right)\)\(\Leftrightarrow-28xd+49d^2=0\)\(\Leftrightarrow7d\left(-4x+7d\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}d=0\\-4x+7d=0\end{matrix}\right.\).
Với \(d=0\) suy ra \(x=y=z=\dfrac{217}{3}\).
Suy ra: \(n=820:\dfrac{217}{3}=\dfrac{2460}{217}\notin N\).
Với \(4+7d=0\). Ta có hệ:
\(\left\{{}\begin{matrix}4x+7d=0\\3x+49d=217\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\d=4\end{matrix}\right.\).
Vậy \(u_1=7-4=3\).
Có \(S_n=\dfrac{\left[2u_1+\left(n-1\right)d\right]n}{2}=\dfrac{\left[2.3+\left(n-1\right)4\right]n}{2}=820\)
\(\Rightarrow n=20\left(tm\right)\).
u 12 = 23 S 12 = 144 ⇒ u 1 + 11 d = 23 12 2 u 1 + u 12 = 144 ⇔ u 1 + 11 d = 23 u 1 + 23 = 24 ⇔ u 1 = 1 d = 23 − u 1 11 = 2
Chọn đáp án A
\(a,u_{12}=u_1+\left(12-1\right)d=u_1+11d=\left(-3\right)+11\cdot2=19\)
b, Giả sử số 195 là số hạng thứ n (n \(\in\) N*) của cấp số cộng.
Ta có:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow195=-3+\left(n-1\right)\cdot2\\ \Leftrightarrow n=100\)
Vậy số 195 là số hạng thứ 100 của cấp số cộng.
Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)
\( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)
\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)
\( \Leftrightarrow \left[ \begin{array}{l}n = - 54(L)\\n = 50(TM)\end{array} \right.\)
Vậy phải lấy tổng 50 số hạng đầu
Phương pháp
Cấp số cộng ( u n ) có số hạng đầu u1 và công sai d thì số hạng thứ n là
u n = u 1 + ( n - 1 ) d
Cách giải:
Gọi 198 là số hạng thứ n của dãy.
Ta có: 198 = u 1 + ( n - 1 ) d = - 2 + ( n - 1 ) . 5
⇔ 5 n = 205 ⇔ n = 41
Chọn D.