K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Chọn đáp án B

Ta có: un = 4+ (n - 1).3 = 3n + 1,

1 ≤ n ≤ 100

 vk = 1+ (k - 1).5 = 5k - 4,

1 ≤ k ≤ 100

Để một số là số hạng chung của hai cấp số cộng ta phải có:

3n +1 = 5k - 4 3n = 5(k-1) n ⋮  tức là n = 5t.

Khi đó; 3.5t = 5(k - 1) hay 3t = k - 1 nên  k =1 + 3t, t  ∈ Z

Vì 1 ≤ n ≤ 100 nên 1 ≤ t ≤ 20 . Mà  t ∈ Z   ⇒ t ∈ 1 ; 2 ; 3 ; . . . ; 19 ; 20

 Ứng với 20 giá trị của t cho 20 giá trị của n và 20 giá trị của k.

Vậy có 20 số hạng chung của hai dãy

15 tháng 4 2019

Ta có u n = 4 + ( n − 1 ) .3 = 3 n + 1  với  1 ≤ n ≤ 100

v k = 1 + ( k − 1 ) .5 = 5 k − 4 với  1 ≤ k ≤ 100

Để một số là số hạng chung của hai cấp số cộng ta phải có

3 n + 1 = 5 k − 4 ⇔ 3 n = 5 ( k − 1 )

⇒ n ⋮ 5 tức là   n = 5 t với  t ∈ ℤ

 

Vì 1 ≤ n ≤ 100  nên 1 ≤ t ≤ 20 . Do đó có 20 số hạng chung của hai dãy số.

Chọn đáp án B

25 tháng 5 2017

Gọi ba số đó là \(x,y,z\). Do ba số là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng nên:
\(x;y=x+7d;z=x+42d\). (Với d là công sai của cấp số cộng).
Ta có: \(x+y+z=x+x+7d+x+42d=3x+49d=217\).
Mặt khác x, y, z là các số hạng liên tiếp của một cấp số nhân nên:
\(y^2=xz\)\(\Leftrightarrow\left(x+7d\right)^2=x\left(x+42d\right)\)\(\Leftrightarrow-28xd+49d^2=0\)\(\Leftrightarrow7d\left(-4x+7d\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}d=0\\-4x+7d=0\end{matrix}\right.\).
Với \(d=0\) suy ra \(x=y=z=\dfrac{217}{3}\).
Suy ra: \(n=820:\dfrac{217}{3}=\dfrac{2460}{217}\notin N\).
Với \(4+7d=0\). Ta có hệ:
\(\left\{{}\begin{matrix}4x+7d=0\\3x+49d=217\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\d=4\end{matrix}\right.\).
Vậy \(u_1=7-4=3\).
\(S_n=\dfrac{\left[2u_1+\left(n-1\right)d\right]n}{2}=\dfrac{\left[2.3+\left(n-1\right)4\right]n}{2}=820\)
 \(\Rightarrow n=20\left(tm\right)\).
 

30 tháng 11 2017

Đáp án C

7 tháng 4 2018

u 12 = 23 S 12 = 144   ⇒ u 1 + 11 d = 23 12 2 u 1 + u 12 = 144     ⇔ u 1 + 11 d = 23 u 1 + ​ 23 = 24 ⇔ u 1 = 1 d = 23 − u 1 11 = 2

Chọn đáp án A

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,u_{12}=u_1+\left(12-1\right)d=u_1+11d=\left(-3\right)+11\cdot2=19\)

b, Giả sử số 195 là số hạng thứ n (n \(\in\) N*) của cấp số cộng.

Ta có: 

\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow195=-3+\left(n-1\right)\cdot2\\ \Leftrightarrow n=100\)

Vậy số 195 là số hạng thứ 100 của cấp số cộng.

14 tháng 5 2019

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)

 \( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)

\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)

\( \Leftrightarrow \left[ \begin{array}{l}n =  - 54(L)\\n = 50(TM)\end{array} \right.\)

Vậy phải lấy tổng 50 số hạng đầu 

28 tháng 4 2019

Phương pháp

Cấp số cộng ( u n ) có số hạng đầu u1 và công sai d  thì số hạng thứ n

u n = u 1 + ( n - 1 ) d

 Cách giải:

Gọi 198 là số hạng thứ n của dãy.

Ta có: 198 = u 1 + ( n - 1 ) d = - 2 + ( n - 1 ) . 5

⇔ 5 n = 205 ⇔ n = 41

Chọn D.