K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

22 tháng 10 2017

Dễ thấy, nếu x < 0:

\(VT=\sqrt{x^2+5}+3x< 3x+\sqrt{x^2+5}\)

Phương trình vô nghiệm. Vậy: \(x\ge0\)

Phương trình ban đầu tương đương:

\(\sqrt{x^2+12}+5-3x\sqrt{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+5}-\frac{x^2-4}{3x+\sqrt{x^2+5}}+3.x-2=0\)

\(\Leftrightarrow x-2.\frac{x+2}{\sqrt{x^2+12}+5}-\frac{x+2}{3x.\sqrt{x^2+5}}+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{x+2}{\sqrt{x^2+12}+5}-\frac{x+2}{3x+\sqrt{x^2+5}}+3=0\end{cases}}\)

Ta có:

\(2\Leftrightarrow x+2.\frac{1}{\sqrt{x^2+12}+5}-\frac{1}{3x+\sqrt{x^2+5}}+3=0\)

\(\Leftrightarrow x+2.\frac{\sqrt{x^2+12}-3x+\sqrt{x^2+5}}{\sqrt{x^2+12}+5.3x\sqrt{x^2+5}}=0\)

Do x > 0 nên \(VT>0=VF\). Do đó phương trình 2 vô nghiệm

Vậy: Phương trình ban đầu có nghiệm duy nhất \(x=2\)

P/s: Bn tham khảo nhé