K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2020

\(\sqrt{5+\sqrt{21}}=\frac{\sqrt{10+2\sqrt{21}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{6}}{2}\)

\(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\) đề thế này phải k bn

17 tháng 10 2017

\(\dfrac{\sqrt{2}\left(\sqrt{\sqrt{21}+5}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)

=\(\dfrac{\sqrt{3+7+2\sqrt{3.7}}+\sqrt{3+7-2\sqrt{21}}}{\sqrt{2}}\)

=\(\dfrac{\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}{\sqrt{2}}\)

=\(\dfrac{\sqrt{3}+\sqrt{7}+\sqrt{7}-\sqrt{3}}{\sqrt{2}}\)

=\(\sqrt{14}\)

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

3 tháng 6 2020

\(\sqrt{32}+10\sqrt{7}+\sqrt{32}-10\sqrt{7}\)

\(=\left(\sqrt{32}+\sqrt{32}\right)+\left(10\sqrt{7}-10\sqrt{7}\right)\)

\(=\sqrt{16\times2}\times2\)

\(=\sqrt{\left(4\right)^2\times2}\times2\)

\(=4\sqrt{2}\times2\)

\(=8\sqrt{2}\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bạn viết đề bằng công thức toán mọi người sẽ hỗ trợ tốt hơn chứ viết thế này khó hiểu quá.

25 tháng 3 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)

mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)

từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1

b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)

=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')

mặt khác VP=5-2(x+1)2\(\le\)5(2')

từ (1') và (2')=> pt vô nghiệm

21 tháng 9 2019

vì sao lại có : căn(3(x+1)^2+4) +căn(5(x+1)^2+16) >=6 vậy ạ?

 

9 tháng 8 2018

Mình cần gấp nha mn 😭😭 

22 tháng 7 2020

1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)