K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 10 2021

\(p=\sqrt{x^2-2xa+a^2}+\sqrt{x^2-2xb+b^2}\)

\(=\sqrt{\left(x-a\right)^2}+\sqrt{\left(x-b\right)^2}\)

\(=\left|x-a\right|+\left|x-b\right|\)

\(=\left|x-a\right|+\left|b-x\right|\ge\left|x-a+b-x\right|=\left|b-a\right|\)

Dấu \(=\)khi \(\left(x-a\right)\left(b-x\right)\ge0\).

14 tháng 7 2015

1) ta có

\(\sqrt{x-2}\ge0\)với mọi x 

=>A=1+\(\sqrt{x-2}\ge1\)

dấu "=" xảy ra khi:

x-2=0

<=>x=2

Vậy GTNN của A  là 1 tại x=2

2)

ta có :

\(-\sqrt{2x-1}\le0\)

=>B=5-\(\sqrt{2x-1}\le5\)

Dấu "=" xảy ra khi:

2x-1=0

<=>2x=1

<=>x=1/2

Vậy GTLN của B là 5 tại x=1/2

19 tháng 9 2020

\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)

Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)

=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

=> MinA = 5 <=> x = 4

19 tháng 9 2020

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)

Xét \(\left|x-1\right|+\left|x-6\right|\)ta có: 

\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)

TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )

TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)

mà \(\left|x-4\right|\ge0\)(2)

Từ (1) và (2) \(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

Vậy \(minA=5\)\(\Leftrightarrow x=4\)

19 tháng 9 2020

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

    \(\Leftrightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

    \(\Leftrightarrow A=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

Vì \(\left|a\right|=\left|-a\right|\) \(\Rightarrow\)\(\left|x-6\right|=\left|6-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:

     \(\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=5\)

      \(\Rightarrow\)\(A\ge\left|x-4\right|+5\)

Vì \(\left|x-4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-4\right|+5\ge5\forall x\)

      \(\Rightarrow\)\(A\ge5\)

Dấu "=" xảy ra khi:  \(\hept{\begin{cases}\left(x-1\right)\left(6-x\right)>0\\x-4=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}1< x< 6\\x=4\end{cases}}\)

                           \(\Rightarrow x=4\)

Vậy \(A_{min}=5\)\(\Leftrightarrow\)\(x=4\)

NV
20 tháng 7 2021

Đề là: \(A=\sqrt{x-2\sqrt{x-3}}\) đúng ko em?

ĐKXĐ: \(x\ge3\)

\(A=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\ge\sqrt{2}\)

\(A_{min}=\sqrt{2}\) khi \(x=4\)