K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

2-->8: 4CS

10-->98: 45.2=90CS

100-->998: 450.3=1350CS

1000--> ?: ?.4=?CS

Số cuối cùng của dãy là:

{[(2016-4-90-1350):4]-1}.2+1000=1284

=>CS thứ 2016 của dãy là 4

4 tháng 2 2017

so do la 4032

leuleu

26 tháng 2 2017

-1/2+3/21+ -2/6 + -5/30 chứ gì

đầu tiên rút gọn lại cho nó nhỏ sẽ dễ tính hơn

-1/2+3/21+ -2/6 + -5/30

= -1/2 + 1/7 + -1/3 + -1/6

=( -1/2 + -1/3 + -1/6) +1/7

=(-3/6 + -2/6 + -1/6) + 1/7

=-6/6 + 1/7

=1 +1/7

=7/7+1/7

=8/7

26 tháng 2 2017

cảm ơn bạn nhiềuhahahihihihayeu

7 tháng 11 2017

\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)

Vậy \(\left(3n\right)^{100}⋮81\)

Chúc em học tốt!vui

7 tháng 11 2017

Cảm ơn cj nhìu nhìu lắm!!!hihingaingung

11 tháng 4 2017

Giống nhau:

- Đều là các số tự nhiên

Khác nhau:

-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó

-Hợp số là số tự nhiên có nhiều hơn hai ước

Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.

11 tháng 4 2017

thanks

23 tháng 10 2017

Bỏ mũ 2006 nha mọi người!

10 tháng 8 2018

Tuy có vẻ hơi muộn nhưng thôi leuleu

Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)

Thật vậy, ta có :

72004 với lũy thừa là 2004 ⋮ 4

⇒ 72004 = ( .......... 9 )

392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4

⇒ 392^94 = ( .......... 9 )

⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10

\(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

A=1/10.(72004-392^94) là số tự nhiên.

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

26 tháng 7 2017

dấu hiệu chia hết cho 4 là : 2 số cuối cùng chia hết cho 4 thì số đó chia hết cho 4

dấu hiệu chia hết 5 : số có tận cùng là 0 ; 5 thì chia hết 5

\(x1357y⋮5\) => y=0 hoặc 5

TH1 : y = 0

=> x13570\(⋮5\)

vì 70 \(⋮4̸\) ( loại )

TH2 : y = 5

=> \(x13575⋮5\) nhưng 75 ko chia hết 4 (loại )

từ 2 trường hợp trên => ko tồn tại y

\(\Leftrightarrow\) ko có số x1357y \(⋮5;4\)

21 tháng 10 2017

\(\overline{x1357y}⋮5\) nên \(y\in\left\{0;5\right\}\).

Do \(75⋮4\) nên \(y=0\). Ta được \(\overline{x13570}\).

\(\overline{x13570}⋮4;5\) nên \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).

Vậy \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)\(y=0\).

2 tháng 4 2017

Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)

Khi chia \(a\) cho \(3\) ta có các trường hợp :

\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)

\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)

\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)

Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)

\(\rightarrowđpcm\)

~ Chúc bn học tốt ~

2 tháng 4 2017

Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )

Xét 3 trường hợp :

+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3

+ a = 3k + 1

=> a+2 = 3k + 1 + 2

= 3k + ( 1 + 2 )

= 3k + 3

= 3(k+1) chia hết cho 3

=> (a+2) \(⋮\) 3

+ a = 3k + 2

=> a+1 = 3k + 2 + 1

= 3k + ( 2 + 1 )

= 3k + 3

= 3(k+1) chia hết cho 3

=> (a+1) \(⋮\) 3

Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3