Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt tổng trong ngoặc là M
=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)
Khi đó A=1+M (M<1)
Ta có công thức :1+x<2 nếu x<1
=>A<1
CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^
\(a)\) Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
b, Dãy B có 30 số ta nhóm thành 5 nhóm mỗi nhóm gồm 6 số thì mỗi nhóm đều chia hết cho 63
Ví dụ : 2^1+2^2+2^3+2^4+2^5+2^6
= 2.(1+2+2^2+2^3+2^4+2^5)
= 2.63 chia hết cho 6
=> B chia hết cho 63
Mà 63 = 21.3 nên B chia hết cho 21
a, Có : A = 1 + 1/2.2 + 1/3.3 + ....... + 1/50.50
=> A < 1 + 1/1.2 + 1/2.3 + ...... + 1/49.50
= 1 + 1 - 1/2 + 1/2 - 1/3 + ...... + 1/49 - 1/50
= 1 + 1 - 1/50
= 2 - 1/50
< 2
=> A < 2
Tk mk nha
b, 21 + 22 + 23 + ... + 230
= ( 21 + 22 + 23 + 24 + 25 + 26 ) + ( 27 + 28 + 29 + 210 + 211 + 212 ) + ... + ( 225 + 226 + 227 + 228 + 229 + 230 )
= 21 . ( 20 + 21 + 22 + 23 + 24 + 25 ) + 27 . ( 20 + 21 + 22 + 23 + 24 + 25 ) + ... + 225 . ( 20 + 21 + 22 + 23 + 24 + 25 )
= 2 . 63 + 27 . 63 + ... + 225 . 63
= 63 . ( 2 + 27 + ... + 225 )
= 21 . 3 . ( 2 + 27 + ... + 225 ) \(⋮\)21
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)
mà \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}\)<1 (2)
mà 1<3 (3)
từ (1),(2) và (3)=> đpcm
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)
b, B = 2 + 22 + 23 +...+ 230
= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)
= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)
= 2.63+...+225.63
= 63(2+...+225)
Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21
Vậy B chia hết cho 21
Cảm ơn bn nhìu nha !!!