Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
a, Với mọi giá trị của x;y ta có:
\(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)
Hay \(C\ge-10\)với mọi giá trị của x;y
Để \(C=-10\) thì \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10=-10\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy................
b, Với mọi giá trị của x ta có:
\(\left(2x-1\right)^2+3\ge3\Rightarrow\dfrac{5}{\left(2x-1\right)^2+3}\ge\dfrac{5}{3}\)
Hay \(D\ge\dfrac{5}{3}\) với mọi giá trị của x.
Để \(D=\dfrac{5}{3}\) thì \(\dfrac{5}{\left(2x-1\right)^2+3}=\dfrac{5}{3}\)
\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Vậy..................
Chúc bạn học tốt!!!
\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\)
\(\left(x+1\right)^2\ge0;\left(y-\dfrac{1}{3}\right)^2\ge0\)
\(C_{MIN}\Rightarrow\left(x+1\right)^2_{MIN};\left(y-\dfrac{1}{3}\right)^2_{MIN}\)
\(\left(x+1\right)^2_{MIN}=0;\left(y-\dfrac{1}{3}\right)^2_{MIN}=0\)
\(\Rightarrow C_{MIN}=0+0-10=-10\)
\(D=\dfrac{5}{\left(2x-1\right)^2+3}\)
\(D_{MAX}\Rightarrow\left(2x-1\right)^2+3_{MIN}\)
\(\left(2x-1\right)^2\ge0\)
\(\left(2x-1\right)^2+3_{MIN}\Rightarrow\left(2x-1\right)^2_{MIN}=0\)
\(\Rightarrow\left(2x-1\right)^2+3_{MIN}=0+3=3\)
\(\Rightarrow D_{MAX}=\dfrac{5}{3}\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
a) (x+2)2+\(\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)
Dau = xay ra khi : \(\left\{{}\begin{matrix}x+2=0\\y-\dfrac{1}{5}=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-2\\y=\dfrac{1}{5}\end{matrix}\right.\)
Vay GTNN cua A=-10 khi : x=-2 , y=1/5
b) ta co : (2x-3)2+5≥5
=> B=\(\dfrac{4}{\left(2x-3\right)^2+5}\le\dfrac{4}{5}\)
Dau = xay ra khi : 2x-3=0
=> x=3/2
Vậy GTLN của B=4/5 khí x=3/2
mk giúp bn bài này lun
Giải :
1, Ta có: (x + 2)2 ≥ 0 ∀ x, \(\left(y-\dfrac{1}{5}\right)^2\) ≥ 0 ∀ y
=> (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\) ≥ 0
=> (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\) - 10 ≥ 0 + (-10) = -10
=> A ≥ -10
Dấu "=" xảy ra khi (x + 2)2 = 0 và \(\left(y-\dfrac{1}{5}\right)^2\)= 0
=> x + 2 = 0 và \(y-\dfrac{1}{5}\) = 0
=> x = -2 và y = \(\dfrac{1}{5}\)
Vậy min A =10 khi x = -2 ; y = \(\dfrac{1}{5}\)
b, Ta có: ( 2x - 3)2 ≥ 0 ∀ x
=> ( 2x - 3)2 +5 ≥ 0 + 5 = 5
=> B ≤ \(\dfrac{4}{5}\)
Dấu " = " xảy ra khi (2x - 3)2 = 0 => 2x- 3 = 0
=> x = \(\dfrac{3}{2}\)
Vậy max A = \(\dfrac{4}{5}\) tại x = \(\dfrac{3}{2}\)