K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Xét ΔABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\) (định lý tổng 3 góc trong một tam giác)

=> \(\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(80+30\right)=180-110=70\) 

Vì AD là tia phân giác cua \(\widehat{A}\) (gt)

=> \(\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{A}=\frac{1}{2}\cdot70=35\)

Xét ΔABD có: \(\widehat{B}+\widehat{BAD}+\widehat{BDA}=180\) (đinhk lý tổng 3 góc trong một tam giác)

=> \(\widehat{BDA}=180-\left(\widehat{B}+\widehat{BAD}\right)=180-\left(80+35\right)=180-115=65\)

Hay \(\widehat{ADH}=65\)

Xét ΔAHD có: \(\widehat{ADH}+\widehat{AHD}+\widehat{HAD}=180\) (định lý tổng các góc trong 1 tam giác)

=>\(\widehat{HAD}=180-\left(\widehat{ADH}+\widehat{AHD}\right)=180-\left(65+90\right)=180-155=25\)

 

 

6 tháng 8 2016

800 độ hay 80vay ban

 

7 tháng 8 2017

Trên mạng có ák

7 tháng 8 2017

Mk tìm rồi nhưng trên mạng kh thấy

17 tháng 1 2017

Mình không vẽ hình nhé

a)Ta có: BC=\(4\sqrt{2}\)

Vậy BC=\(4\sqrt{2}\)

b)Xét hai tam giác vuông ADB và ADC có:

                           AB=AC( giả thiết)

                          \(\widehat{ABD}=\widehat{ACD}\)(giả thiết)

Do đó ADB=ADC( cạnh huyền - góc nhọn)

Suy ra DB=DC( hai cạnh tương ứng)

Mà \(D\in BC\)( giả thiết)

\(\Rightarrow\)D là trung điểm của BC

Vậy D là trung điểm của BC

c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)

Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)

Xét tam giác AED có:

\(\widehat{CAD}=45^0\)( chứng minh trên)

\(\widehat{AED}=90^0\left(DE⊥AC\right)\)

Do đó tam giác AED vuông cân tại E

Vậy tam giác AED vuông cân tại E

d) Vì D là trung điểm của BC

Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)

Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có

\(AD^2+DC^2=AC^2\)

hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)

hay \(AD^2=16-8=8\)

\(\Rightarrow AD=\sqrt{8}\)(cm)

Vậy \(AD=\sqrt{8}\left(cm\right)\)

Xin lỗi tôi chưa học đến