Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0
Theo hệ thức Vi-ét :
x1 + x2 = 97 và x1.x2 = a
x3 + x4 = 1 và x3.x4 = b
Theo đề bài :
* x1 + x2 = x3^4 + x4^4
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2
<=> 97 = (1 - 2b)^2 - 2b^2
<=> 2b^2 - 4b - 96 = 0 (1)
* x1.x2 = (x3.x4)^4
<=> b^4 = a (2)
Từ (1) được b = 8 hoặc b = -6
Suy ra a = 4096 hoặc a = 1296
Thử lại nhận a = 1296
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4
x^2 + x - 2 = 0
<=> ( x^2 - x ) + ( 2x - 2 ) = 0
<=> x . ( x - 1 ) + 2 . ( x - 1 ) = 0
<=> ( x - 1 ) . ( x + 2 ) = 0
<=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy .......
Tk mk nha
a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0
=>x^2-2x+1-2=0
=>(x-1)^2=2
=>\(x=\pm\sqrt{2}+1\)
b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0
=>Phương trình luôn có hai nghiệm phân biệt
Gọi x1,x2 là các nghiệm của phương trình đã cho
Áp dụng hệ thức Vi-et,ta có :
x1 + x2 = -5 ; x1x2 = -1
gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :
y1 + y2 = x14 + x24 , y1y2 = x14x24
Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27
Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727
y1y2 = ( x1x2 )4 = 1
Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0
Ta co: P = -1 <0
=> (1) có 2 nghiệm phân biệt khác dấu
Gọi hai nghiệm đó là \(x_1;x_2\)
=> \(x_1+x_2=-5;x_1.x_2=-1\)
Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)
\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)
\(=727\)
=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là:
\(x^2-727x+1=0\)
bình phương thiếu của 1 tổng là \(a^2+ab+b^2\)
bình phương thiếu của 1 hiệu là \(a^2-ab+b^2\)
Chứng minh \(a^2+ab+b^2\ge0\)
Ta có: \(a^2+ab+b^2=a^2+2.a.\dfrac{1}{2}b+\left(\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\)
Tương tự cho trường hợp còn lại
Bạn search Google: "Cách nhẩm nghiệm phương trình bậc cao" xem!
Như bài này mình nhẩm được nghiệm m = 1 nên chắc chắn đa thức vế trái sẽ chia hết cho (m-1).
Giảm được 1 bậc là về phương trình bậc 2. Hoặc nhẩm nghiệm tiếp hoặc có bác Delta rồi!
GL!
Với phương trình bậc ba, ta có thể nhẩm nghiệm để tách nhân tử chung, nhằm giảm bậc của phương trình. Chú ý nếu phương trình có nghiệm nguyên thì nghiệm đó sẽ là ước của hệ số tự do. Thực ra nếu ko nhẩm đc ta có thể nhờ máy tính :)
Giả sử như bài trên, ta thấy tổng các hệ số bằng 0 nên có nghiệm x = 1. Vậy thì ta sẽ cố gắng tách VT để xuất hiện nhân tử chung là (x - 1).
Sau đó nhân tử còn lại là bậc hai, ta đã biết cách giải.
Các phương trình bậc ca khác cũng tương tự, ta tìm cách tách để giảm bậc của các phương trình cần giải.