Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4+4\)
\(A=x^4+4+4x^2-4x^2\)
\(A=\left(x^2+2\right)^2-4x^2\)
\(A=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)
\(B=x^4+64\)
\(B=x^4+64+16x^2-16x^2\)
\(B=\left(x^2+8\right)^2-16x^2\)
\(B=\left(x^2+8+4x\right)\left(x^2+8-4x\right)\)
Bài 5:
a) Ta có: \(x^4+4\)
\(=x^4+4\cdot x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
c) Ta có: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+1\)
\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)\)
\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x-x^3-1\right)\)
d) Ta có: \(x^8+x^4+1\)
\(=x^8+x^4+x^6-x^6+1\)
\(=x^4\left(x^4+x^2+1\right)-\left(x^6-1\right)\)
\(=x^4\left(x^4+x^2+1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
g) Ta có: \(x^4+2x^2-24\)
\(=x^4+6x^2-4x^2-24\)
\(=x^2\left(x^2+6\right)-4\left(x^2+6\right)\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)
i) Ta có: \(a^4+4b^4\)
\(=a^4+4a^2b^2+4b^4-4a^2b^2\)
\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)
a) 8x3 - 64 = (2x)3 - 43
= (2x - 4)\([\)(2x)2 + 2x.4 + 42\(]\)
= (2x - 4)(4x2 + 8x + 16)
b) 1 + 8x6y3
= 13 + (2x2y)3
= (1 + 2x2y)[(2x2y)2 - 2x2y.1 + 12]
= (1 + 2x2y)(4x4y2 - 2x2y + 1)
c) 27x3 + \(\frac{y^3}{8}\)
= (3x)3 + \(\left(\frac{y}{2}\right)^3\)
= \(\left(3x+\frac{y}{2}\right)\left[\left(3x\right)^2-3x.\frac{y}{2}+\left(\frac{y}{2}\right)^2\right]\)
= \(\left(3x-\frac{y}{2}\right)\left(9x^2-\frac{3xy}{2}+\frac{y^2}{4}\right)\)
d) 125x3 + 27y3
= (5x)3 + (3y)3
= (5x + 3y)[(5x)2 - 5x.3y + (3y)2]
= (5x + 3y)(25x2 - 15xy + 9y2)
phân tích các đa thức sau thành nhân tử
a) 4x^2 - 4xy + 4y^2
\(=\) \(\left(2x\right)^2-4xy+\left(2y\right)^2\)
\(=\left(2x-2y\right)^2\)
b) x^2 - 4xy +4y^2
\(=x^2-4xy+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
c) x^2 + 10x + 25
\(=x^2+2.x.5+5^2\)
\(=\left(x+5\right)^2\)
d)x^2 - 10x + 25
\(=x^2-2.x.5+5^2\)
\(=\left(x-5\right)^2\)
e) 81 - (x+1)^2
\(=9^2-\left(x+1\right)^2\)
\(=\left(9-x-1\right)\left(9+x+1\right)\)
f) 16x^2 - 64 (y + 1)^2
\(=16x^2-8^2\left(y+1\right)^2\)
\(=16x^2-\left(8y+8\right)^2\)
\(=\left(16-8y-8\right)\left(16+8y+8\right)\)
p/s: ko chắc câu cuối đâu :v