Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để thương của biểu thức đạt giá trị nhỏ nhất thì: x2-4x+5 nhỏ nhất
⇔ \(x^2-4x+5=x^2-2.2x+4+1\)
=(x-2)2+1 ≥1
Vậy để thương của biểu thức đạt giá trị nhỏ nhất thì x-2=0 ⇔ x=2
a,Để phép chia thực hiện đc<=>x^n<=x^5=>n<=5=>n=(0;1;2;3;4;5)
y^n<=y=>n<=1=>n=(1;0)
Từ hai ý trên=>n=(0;1)
b,,Để phép chia thực hiện đc<=>x^n+1<=x^2=>n+1<=2=>n=(0;1)
y^n=1<=y^2=>n+1<=2=>n=(0;1)
Từ hai ý trên =>n=(0;1)
a: \(=12^{n+3}-8x^{n+2}\)
b: \(=3x^3-5x-2x^3-x^2+x^2=x^3-5x\)
c: \(=12x^4-28x^3+8x^2\)
d: \(=x^3+3x^2y+3xy^2+y^3\)
a) 2(x-1)2 - 4(x+3)2 + 2x(x-5)
= 2(x2 -2x +1)- 4(x2 + 6x +9) + 2x2 -10x
= 2x2 - 4x + 2 -4x2 - 24x - 36 + 2x2 - 10x
= (2x2 + 2x2 - 4x2) - (4x + 24x+10x) +(2-36)
= -38x-34
b) 2(2x+5)2 -3(4x+1)(1-4x)
= 2(4x2 + 20x + 25) + 3(4x+1)(4x-1)
= 8x2 +40x + 50 + 3(16x2 -1)
= 8x2 + 40x + 50 + 48x2 - 3
=56x2 +40x + 47
a, \(2\left(x-1\right)^2-4\left(x+3\right)^2+2x\left(x-5\right)\)
\(=2\left(x^2-2x+1\right)-4\left(x^2+6x+9\right)+2x\left(x-5\right)\)
\(=2x^2-4x+2-4x^2-24x-36+2x^2-10=-28x-44\)
b, \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)
\(=8x^2+40x+50-3+48x^2=56x^2+40x+47\)
Giải:
4xn (7xn-1 + x - 5) - 2xn-2 (14xn+1 - 10x2)
= 28x2n-1 +4xn + 1 – 20xn - 28x2n-1 + 20xn
= 4xn+1