K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

1)

a)\(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

2)

a) Có: \(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\)

\(\left\{{}\begin{matrix}99\overline{ab}⋮99\\\left(\overline{ab}+\overline{cd}\right)⋮99\end{matrix}\right.\)

\(\Rightarrow\overline{abcd}⋮99\)

b) Có: \(\overline{abcdef}=1000\overline{abc}+\overline{def}=999\overline{abc}+\left(\overline{abc}+\overline{def}\right)=37\cdot27\cdot\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)

\(\left\{{}\begin{matrix}37\cdot27\cdot\overline{abc}⋮37\\\left(\overline{abc}+\overline{def}\right)⋮37\end{matrix}\right.\)

\(\Rightarrow\overline{abcdef}⋮37\)

3)

a) Có: \(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\\ A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\\ A=13+3^3\cdot13+...+3^{1998}\cdot13\\ A=13\left(1+3^3+...+3^{1998}\right)⋮13\)

b) Có: \(B=1+4+4^2+...+4^{2010}+4^{2011}+4^{2012}\\ B=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\\ B=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\\ B=21+4^3\cdot21+...+4^{2010}\cdot21\\ B=21\left(1+4^3+...+4^{2010}\right)⋮21\)

7 tháng 10 2019

1) Chứng tỏ:

a) ab + ba chia hết cho 11.

Ta có: ab + ba = 10a + b + 10b + a

                        = 11a + 11b

                        = 11( a + b )

Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )

b) ab - ba chia hết cho 9.

Ta có: ab - ba = 10a + b - (10b + a)

                       = 10a + b - 10b - a

                       = 9a - 9b

                       = 9( a - b )

Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.

2) Chứng tỏ:

a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.

Ta có:  ab + cd chia hết cho 99

=> 99ab + ab + cd chia hết cho 99.

=> 100ab + cd chia hết cho 99.

=> abcd chia hết cho 99 ( đpcm )

b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.

Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def

Vì 37.27abc chia hết cho 37 nên nếu abc def chia hết cho 37 thì abcdef chia hết cho 37.

~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~

7 tháng 10 2019

Bài 1

a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11

b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9

Bài 2

a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)

Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99

b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)

\(\Rightarrow\overline{abcdef}\) chia heets cho 37

Bài 3

a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13

b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21

7 tháng 10 2019

3a,

\(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\)

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)...+\left(3^{1998}+3^{1999}+3^{2000}\right)\)

\(A=13+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\)

\(A=13+3^3.13+...+3^{1998}.13\)

\(A=13\left(1+3^3+...+3^{1998}\right)\)

\(\Rightarrow A⋮13\)

22 tháng 3 2015

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

2 tháng 8 2016

ban tran xuan quynh tra loi dung roi

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

4 tháng 8 2016

2.

a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)

Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên

\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)

Vậy \(n\in\left\{1;2;3;6\right\}\)

c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)

Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên

\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

16 tháng 9 2017

Bài 1 :

a, ab + ba = (a*10 + b) + (b*10 + a)

               = a*(10+1) + b*(1+10)

               = a*11 + b*11 chia hết cho 11

b, abc - cba = (a*100 + b*10 + c) - (c*100 + b*10 + a)

                  = a*99 + 0b + c*(-99) chia hết cho 99

16 tháng 9 2017

VẬY CÒN BÀI 2 VÀ BÀI 3 THÌ SAO