Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. aaa có dấu gạch trên đầu chia hết cho 37
Ta có aaa=a.37
aaa= a.3.37 chia hết cho 37
Hk tốt
1.Câu c và d chia hết cho 6
2.a chia hết cho 2
b chia hết cho 5
c chia hết cho 2 và 5
d chia hết cho 2
3.a *=0;2;4;6;8
b *=0;5
c *=0
4.aaa=a.111=a.3.37 chia hết cho 37
abcabc=abc.1001=abc.91.11 chia hết cho 11
aaaaaa=a.111111=a.15873.7 chia hết cho 7
câu 5 mình ko biết nha bạn
1) Chứng tỏ:
a) ab + ba chia hết cho 11.
Ta có: ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11( a + b )
Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )
b) ab - ba chia hết cho 9.
Ta có: ab - ba = 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9( a - b )
Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.
2) Chứng tỏ:
a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.
Ta có: ab + cd chia hết cho 99
=> 99ab + ab + cd chia hết cho 99.
=> 100ab + cd chia hết cho 99.
=> abcd chia hết cho 99 ( đpcm )
b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.
Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def)
Vì 37.27abc chia hết cho 37 nên nếu abc + def chia hết cho 37 thì abcdef chia hết cho 37.
~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~
abcdeg = 1000.abc + deg
abcdeg = 999.abc + abc + def
abcdeg = 37.27.abc + abc + deg (*)
Từ (*) ta có:
abc + deg chia hết cho 37
vế phải chia hết cho 37 => vế trái chia hết 37
Kết luận abcdeg chia hết cho 37
\(a.\)\(135\); \(175\); \(315\); \(375\); \(715\); \(735.\)
b. 135 ; 153 ; 315 ; 351 ; 357 ; 375 ; 573 ; 537 ; 513 ; 531 ; 753 ; 735 .
Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21
1)
a)\(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
2)
a) Có: \(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(\left\{{}\begin{matrix}99\overline{ab}⋮99\\\left(\overline{ab}+\overline{cd}\right)⋮99\end{matrix}\right.\)
\(\Rightarrow\overline{abcd}⋮99\)
b) Có: \(\overline{abcdef}=1000\overline{abc}+\overline{def}=999\overline{abc}+\left(\overline{abc}+\overline{def}\right)=37\cdot27\cdot\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
Mà \(\left\{{}\begin{matrix}37\cdot27\cdot\overline{abc}⋮37\\\left(\overline{abc}+\overline{def}\right)⋮37\end{matrix}\right.\)
\(\Rightarrow\overline{abcdef}⋮37\)
3)
a) Có: \(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\\ A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\\ A=13+3^3\cdot13+...+3^{1998}\cdot13\\ A=13\left(1+3^3+...+3^{1998}\right)⋮13\)
b) Có: \(B=1+4+4^2+...+4^{2010}+4^{2011}+4^{2012}\\ B=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\\ B=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\\ B=21+4^3\cdot21+...+4^{2010}\cdot21\\ B=21\left(1+4^3+...+4^{2010}\right)⋮21\)
HOÀNG TÚ UYÊN ƠI CHO MÌNH HỎI TÍ :
Ở CÂU 2 TẠI SAO x CÓ THỂ LÀ 0 HOẶC 5 BẠN GIẢI THÍCH TÍ CHO MÌNH ĐƯỢC KO
3a,
\(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)...+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(A=13+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\)
\(A=13+3^3.13+...+3^{1998}.13\)
\(A=13\left(1+3^3+...+3^{1998}\right)\)
\(\Rightarrow A⋮13\)