K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

3a,

\(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\)

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)...+\left(3^{1998}+3^{1999}+3^{2000}\right)\)

\(A=13+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\)

\(A=13+3^3.13+...+3^{1998}.13\)

\(A=13\left(1+3^3+...+3^{1998}\right)\)

\(\Rightarrow A⋮13\)

a. aaa có dấu gạch trên đầu chia hết cho 37

Ta có aaa=a.37

          aaa= a.3.37 chia hết cho 37

Hk tốt

27 tháng 9 2019

1 Đáp án c

2 a không b có

3 ?

4 ?

5 ?

27 tháng 9 2019

1.Câu c và d chia hết cho 6

2.a chia hết cho 2

   b chia hết cho 5

   c chia hết cho 2 và 5

   d chia hết cho 2

3.a *=0;2;4;6;8

   b *=0;5

   c *=0

4.aaa=a.111=a.3.37 chia hết cho 37

   abcabc=abc.1001=abc.91.11 chia hết cho 11

   aaaaaa=a.111111=a.15873.7 chia hết cho 7

câu 5 mình ko biết nha bạn

7 tháng 10 2019

1) Chứng tỏ:

a) ab + ba chia hết cho 11.

Ta có: ab + ba = 10a + b + 10b + a

                        = 11a + 11b

                        = 11( a + b )

Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )

b) ab - ba chia hết cho 9.

Ta có: ab - ba = 10a + b - (10b + a)

                       = 10a + b - 10b - a

                       = 9a - 9b

                       = 9( a - b )

Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.

2) Chứng tỏ:

a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.

Ta có:  ab + cd chia hết cho 99

=> 99ab + ab + cd chia hết cho 99.

=> 100ab + cd chia hết cho 99.

=> abcd chia hết cho 99 ( đpcm )

b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.

Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def

Vì 37.27abc chia hết cho 37 nên nếu abc def chia hết cho 37 thì abcdef chia hết cho 37.

~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~

27 tháng 7 2015

abcdeg = 1000.abc + deg 
abcdeg = 999.abc + abc + def 
abcdeg = 37.27.abc + abc + deg (*) 
Từ (*) ta có: 
abc + deg chia hết cho 37

vế phải chia hết cho 37 => vế trái chia hết 37

Kết luận abcdeg chia hết cho 37

22 tháng 7 2016

\(a.\)\(135\)\(175\)\(315\)\(375\)\(715\)\(735.\)

b.     135 ;  153 ;   315 ;  351  ;   357 ; 375 ; 573 ; 537 ; 513 ; 531 ; 753 ; 735 .

7 tháng 10 2019

Bài 1

a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11

b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9

Bài 2

a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)

Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99

b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)

\(\Rightarrow\overline{abcdef}\) chia heets cho 37

Bài 3

a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13

b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21

7 tháng 10 2019

1)

a)\(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

2)

a) Có: \(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\)

\(\left\{{}\begin{matrix}99\overline{ab}⋮99\\\left(\overline{ab}+\overline{cd}\right)⋮99\end{matrix}\right.\)

\(\Rightarrow\overline{abcd}⋮99\)

b) Có: \(\overline{abcdef}=1000\overline{abc}+\overline{def}=999\overline{abc}+\left(\overline{abc}+\overline{def}\right)=37\cdot27\cdot\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)

\(\left\{{}\begin{matrix}37\cdot27\cdot\overline{abc}⋮37\\\left(\overline{abc}+\overline{def}\right)⋮37\end{matrix}\right.\)

\(\Rightarrow\overline{abcdef}⋮37\)

3)

a) Có: \(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\\ A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\\ A=13+3^3\cdot13+...+3^{1998}\cdot13\\ A=13\left(1+3^3+...+3^{1998}\right)⋮13\)

b) Có: \(B=1+4+4^2+...+4^{2010}+4^{2011}+4^{2012}\\ B=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\\ B=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\\ B=21+4^3\cdot21+...+4^{2010}\cdot21\\ B=21\left(1+4^3+...+4^{2010}\right)⋮21\)

19 tháng 11 2017
1.Vi chia hết cho 5 nên x có thể là 0 hoặc 5 mà số đó còn chia hết cho 9 nên: (2+3+7+1+x)phải chia hết cho 9. Nếu x là 0 thì: (2+3+7+1+0)=13 sẽ không chia hết cho 9, nếu x=5: (2+3+7+1+5)=18 sẽ chia hết cho 9. Vậy x= 5 2.Dau hiệu chia hết cho 45 là vừa chia hết cho 5 và 9.x có thể là 0 hoặc 5. Nếu x là 0: (2+y+7+1+0)phải chia hết cho 9. Trong trường hợp này, y sẽ bằng 8. Nếu x bằng 5: (2+y+7+1+5) phải chia hết cho 9. Trong trường hợp này, y sẽ bằng 3.Vay x=0 ; 5. y=3 ; 8.
20 tháng 11 2017

HOÀNG TÚ UYÊN ƠI CHO MÌNH HỎI TÍ :

Ở CÂU 2 TẠI SAO x CÓ THỂ LÀ 0 HOẶC 5 BẠN GIẢI THÍCH TÍ CHO MÌNH ĐƯỢC KO