K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

1/ = ab-ac-ab-bc+ac-bc

    = -2bc

2/ = a^3 +a.b^2 +a.c^2 -a^2 .b - a.b^2 -abc -a^2 .c +a^2 .b +b^3 +bc^2 -a.b^2 -b^2 .c -abc +a^2 .c +b^2 .c +c^3 -abc- b.c^2 -a.c^2

    = a^3 +b^3 +c^3 -3abc

Bạn chỉ cần nhân ra thôi. Chúc bạn học tốt.

18 tháng 7 2018

ai đó giúp mình đi :(

27 tháng 8 2020

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

27 tháng 8 2020

Ta có : a2 + b2 + c2 = ab + bc + ca

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

= (a2 - 2ab + b2) +  (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

=> (a - b)2 + (b - c)2 + (c - a)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

b) Ta có :  2(x2 + t2) + (y + t)(y - t) = 2x(y + t)

=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t

=> 2x2 + t2 + y2 = 2xt + 2xy

=> 2x2 + t2 + y2 - 2xt - 2xy = 0

=> (x2 - 2xy + y2) + (x2 + t2 - 2xt)  = 0

=> (x - y)2 + (x - t)2 = 0

=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)

c) Ta có a + b + c = 0 

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

=> a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = 0

=> a = b = c = 0

Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005

= - 1 + 0 + 1 = 0

Vậy A = 0

2 tháng 7 2017

a) a2+b2+c2 = ab+bc+ca nhân 2 vào cả 2 vế, chuyển tất cả sang vế trái thành 3 HĐT=>đpcm

b) (a+b+c)2 = 3(a2+b2+c2) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế phaỉ tạo ra 3 HĐT=> dpcm

c) (a+b+c)2 = 3(ab+bc+ca) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế trái rồi làm như câu a

Hãy nhấn k nếu bạn thấy đây là câu tl đúng :)

29 tháng 9 2016

(a-b)^2 + (b-c)^2 + (c-a)^2 = 4(a^2 +b^2 + c^2 -ab -bc-ca) 

<=>a^2 -2ab +b^2 + b^2- 2bc +c^2+ c^2 -2ca+a^2= 4(a^2+b^2+c^2-ab-ac-bc)

<=>2(a^2+b^2+c^2-ab-bc-ac)=4(a^2+b^2+c^2-ab-ac-bc)

<=>2(a^2+b^2+c^2-ab-bc-ac)=0

<=>2a^2+2b^2 +2c^2-2ac-2bc-2ab=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

Mà (a-b)^2 >=0; (b-c)^2 >=0 ;(c-a)^2 >=0 

Suy ra: a-b=0; b-c=0; c-a=0

=>a=b; b=c;a=c

Vậy a=b=c

29 tháng 9 2016

Phân tích vế phải : 4(a2+b2+c2 -ab-bc-ca) = 4a2+4b2+4c2-4ab-4bc-4ca                                                                                                                           = 2[(a2 -2ab +b2) + (b2 -2bc +c2) + (c -2ca +a2)] + 2(a2+b2+c2)                                                                                                         = 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2 + b2 +c2)                                                                                                             => (a-b)2 + (b-c)2 + (c-a)2 = 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2 + b+ c2)                                                                                                 => 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2+ b2 + c2) - [(a-b)2 + (b-c)2 + (c-a)2] = 0                                                                                           => (a-b)2 + (b-c)2 + (c-a)2 + 2(a2 + b2 +c2) = 0                                                                                                             Vì vế trái của đẳng thức trên luôn lớn hơn hoặc bằng 0 => a = b = c (đpcm)                                                                                                                                   

1 tháng 9 2015

ban cu lam tu tu thoi. mai xong cung dc k sao dau

22 tháng 3 2016

a) <=>a2+b2-2ab>=0

<=>(a-b)2>=0

.

2 tháng 7 2016

Với mọi a,b,c ta đều có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0.\)Dấu "=" chỉ xảy ra khi a = b = c.

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(1)

a) \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)nên \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)đpcm (a)

b) \(\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2ba+2ac=\left(a+b+c\right)^2\)

nên \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\Leftrightarrow a=b=c\)đpcm (b)

c) Từ \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

nên \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a=b=c\)đpcm (c).

2 tháng 7 2016

Trừ VT cho VP rồi khai triển về dạng hđt là OK