Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)
Ta có : a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
= (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
=> (a - b)2 + (b - c)2 + (c - a)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
b) Ta có : 2(x2 + t2) + (y + t)(y - t) = 2x(y + t)
=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t
=> 2x2 + t2 + y2 = 2xt + 2xy
=> 2x2 + t2 + y2 - 2xt - 2xy = 0
=> (x2 - 2xy + y2) + (x2 + t2 - 2xt) = 0
=> (x - y)2 + (x - t)2 = 0
=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)
c) Ta có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> a2 + b2 + c2 = 0
=> a = b = c = 0
Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005
= - 1 + 0 + 1 = 0
Vậy A = 0
a) a2+b2+c2 = ab+bc+ca nhân 2 vào cả 2 vế, chuyển tất cả sang vế trái thành 3 HĐT=>đpcm
b) (a+b+c)2 = 3(a2+b2+c2) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế phaỉ tạo ra 3 HĐT=> dpcm
c) (a+b+c)2 = 3(ab+bc+ca) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế trái rồi làm như câu a
Hãy nhấn k nếu bạn thấy đây là câu tl đúng :)
(a-b)^2 + (b-c)^2 + (c-a)^2 = 4(a^2 +b^2 + c^2 -ab -bc-ca)
<=>a^2 -2ab +b^2 + b^2- 2bc +c^2+ c^2 -2ca+a^2= 4(a^2+b^2+c^2-ab-ac-bc)
<=>2(a^2+b^2+c^2-ab-bc-ac)=4(a^2+b^2+c^2-ab-ac-bc)
<=>2(a^2+b^2+c^2-ab-bc-ac)=0
<=>2a^2+2b^2 +2c^2-2ac-2bc-2ab=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
Mà (a-b)^2 >=0; (b-c)^2 >=0 ;(c-a)^2 >=0
Suy ra: a-b=0; b-c=0; c-a=0
=>a=b; b=c;a=c
Vậy a=b=c
Phân tích vế phải : 4(a2+b2+c2 -ab-bc-ca) = 4a2+4b2+4c2-4ab-4bc-4ca = 2[(a2 -2ab +b2) + (b2 -2bc +c2) + (c2 -2ca +a2)] + 2(a2+b2+c2) = 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2 + b2 +c2) => (a-b)2 + (b-c)2 + (c-a)2 = 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2 + b2 + c2) => 2[(a-b)2 + (b-c)2 + (c-a)2] + 2(a2+ b2 + c2) - [(a-b)2 + (b-c)2 + (c-a)2] = 0 => (a-b)2 + (b-c)2 + (c-a)2 + 2(a2 + b2 +c2) = 0 Vì vế trái của đẳng thức trên luôn lớn hơn hoặc bằng 0 => a = b = c (đpcm)
Với mọi a,b,c ta đều có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0.\)Dấu "=" chỉ xảy ra khi a = b = c.
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(1)
a) \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)nên \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)đpcm (a)
b) \(\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2ba+2ac=\left(a+b+c\right)^2\)
nên \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\Leftrightarrow a=b=c\)đpcm (b)
c) Từ \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
nên \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a=b=c\)đpcm (c).
1/ = ab-ac-ab-bc+ac-bc
= -2bc
2/ = a^3 +a.b^2 +a.c^2 -a^2 .b - a.b^2 -abc -a^2 .c +a^2 .b +b^3 +bc^2 -a.b^2 -b^2 .c -abc +a^2 .c +b^2 .c +c^3 -abc- b.c^2 -a.c^2
= a^3 +b^3 +c^3 -3abc
Bạn chỉ cần nhân ra thôi. Chúc bạn học tốt.
ai đó giúp mình đi :(