Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
bài 1 .
a. 3 x(5x2 – 2x -1) = 15x3 – 6x2 – 3x
b. (x2+2xy -3)(-xy) = – x3y – 2x2y2 + 3xy
c. 1/2 x2y ( 2x3 – 2/5 xy2 -1 )= x5y – 1/5 x3y3 – 1/2 x2y
bài 2 .
a) 2x^3-3x-5x^3-x^2+x^2=-3x-3x^3
b) 3x^2-6x-5x+5x^2-8x^2+24=-11x+24
c) 3x^3-3/2x^2-x^3-x/2+x/2+2=2x^3-3/2x^2+2
bài 3 .
?????????? bài 3 thì tui ko biết
Bài 3 :
\(P=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(=5x^3-15x+7x^2-5x^3-7x^2=-15x\)
Thay x = -5 vào biểu thức trên ta được
\(-15.\left(-5\right)=75\)
Vậy x = -5 thì P = 75
a. Thay \(x=-\frac{2}{3}\) vào \(C=6x^3-3x^2+2\left|x\right|+4\), ta có :
\(C=6\left(-\frac{2}{3}\right)^3-3\left(-\frac{2}{3}\right)^2+2\left|-\frac{2}{3}\right|+4\)
\(\Rightarrow C=6.\frac{-8}{27}-3.\frac{4}{9}+2.\frac{2}{3}+4\)
\(\Rightarrow C=-\frac{16}{9}-\frac{4}{3}+\frac{8}{3}+4\)
\(\Rightarrow C=\frac{32}{9}\)
b. Thay \(x=\frac{1}{2};y=-3\)vào \(D=2\left|x\right|-3\left|y\right|\), ta có :
\(D=2\left|\frac{1}{2}\right|-3\left|-3\right|\)
\(\Rightarrow D=2.\frac{1}{2}-3.3\)
\(\Rightarrow D=2-9\)
\(\Rightarrow D=-7\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Bài 1:
a, Thay x = \(\frac{-2}{3}\)vào biểu thức A = 6x3 - 3x2 + 2 * |x| + 4 ta có:
=> A = \(6\left(-\frac{2}{3}\right)^3-3\left(-\frac{2}{3}\right)^2+\left|-\frac{2}{3}\right|+4\)
=> A = \(6\left(-\frac{8}{27}\right)-3\cdot\frac{4}{9}+\frac{2}{3}+4\)
=> A = \(-\frac{16}{9}-\frac{4}{3}+\frac{2}{3}+4\) (Đến đây bạn tự giải tiếp nha)
Vậy giá trị của biểu thức A = 6x3 - 3x2 + 2 * |x| + 4 với x = \(\frac{-2}{3}\)là "KQ bạn tính nha"
Nhưng bạn có thể giúp mình bài 2 được ko,còn bài 3 thì mình giải được rồi