K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

1/

a/ \(100+20b=20\left(5+b\right)\) chia hết cho 20

b/ \(abab=10.ab+ab=11.ab\) chia hết cho ab

3/ Tích trên là tích của 3 số tự nhiên liên tiếp

+ Nếu n chẵn do n>=1 => n chia hết cho 2 => tích trên chia hết cho 2

+ Nếu n lẻ và n chia 2 dư 1 thì n-1 và n+1 chia hết cho 2 => tích trên chia hết cho 2

=> tích trên chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 thì tích trên chia hết cho 3

+ Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => tích chia hết cho 3

+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => tích chia hết cho 3

=> Tích trên chia hết cho 3 với mọi n

Mà 2 và 3 là hai số nguyên tố cùng nhau => tích trên chia hết cho 2x3 tức là chia hết cho 6

12 tháng 12 2017

 = n.(n2 + 1) (n2 + 4 )

 = n.[n2 . ( 1 + 4 )]

 = n.(n2 . 5)

 = n.n2 .5

=>  n.(n2 + 1) (n2 + 4 ) chia hết cho 5 

7 tháng 12 2018

Xét 3 trường hợp xảy ra của n :

+) n là số chẵn => n + 4 là số chẵn

=> ( n + 4 ) ( n + 7 ) là số chẵn

=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )

+) n là số lẻ => n + 7 là số chẵn

=> ( n + 4 ) ( n + 7 ) là số chẵn

=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )

+) n bằng 0 => n + 4 = 4 là số chẵn

=> ( n + 4 ) ( n + 7 ) là số chẵn

=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )

Vậy ta có với mọi n thì ( n + 4 ) ( n + 7 ) chia hết cho 2 

7 tháng 12 2018

*Nếu n chẵn

=> n + 4 chẵn

=> (n +4)(n + 7) chẵn

=> (n + 4)(n + 7) chẵn

=> tích này chia hết cho 2

* Nếu n lẻ

=> n + 7 chẵn

=> (n + 4)(n + 7) chẵn

=> tích này chia hết cho 2

Vậy ...........

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

1 tháng 7 2016

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)

  • Nếu n chia hết cho 5 thì A chia hết cho 5
  • Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5

n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.