Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)
ta co b=2-a
a^3+b^3=x+1+7-x=8
a^3+b^3=a^3+b^3+3ab(a+b)
ab(a+b)=0
suy ra a=0 hoac b=0 hoac a=-b
<=> x=-1; x=7
a=-b
a^3=-b^3
x+1=x+7 (vo li nen vo nghiem)
cau B tuong tu
2)
tat ca cac bai tap deu chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so
dang nay co 2 cach
C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)
B^3=10-9B
B=1 cach nay nhanh nhung kho nhin
C2 dat an
\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)
de thay B=a+b
a^3+b^3=10
ab=-3
B^3=10-9B
suy ra B=1
tuong tu giai cac cau con lai.
Bài 1:
a. Đặt \(a=\sqrt[3]{x+1}\); \(b=\sqrt[3]{7-x}\). Ta có:
\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)
\(\Leftrightarrow x=-1\)hoặc \(x=7\)
ta có: A3=\(6\sqrt{3}+10-6\sqrt{3}+10-3\sqrt[3]{\left(6\sqrt{3}+10\right)\left(6\sqrt{3}-10\right)}.\left(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\right)\)
=\(20-3.\sqrt[3]{8}.A\)=\(20-6A\)
do đó A3=20-6A↔A3+6A-20=0↔(A2+2A+10)(A-2)=0
dễ thấy A2+2A+10>0→A=2
b) giống a)
c)giống b)
Giải từ từ lần lượt các biểu thức trong dấu căn nhé:
\(\sqrt{13+\sqrt{48}}=\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}=\sqrt{\left(2\sqrt{3}+1\right)^2}=2\sqrt{3}+1\)
\(\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)
\(B=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\frac{\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{3}-1}\)
\(B=\frac{\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{3}-1}=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}-1}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}-1}\)
\(B=\frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{3+2\sqrt{3}+1}{3-1}=\frac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{1+4\sqrt{3}+12}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{1+4\sqrt{3}+\left(2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-1-2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{1-2\sqrt{3}+\sqrt{3}^2}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3+\sqrt{\left(1-\sqrt{3}\right)^2}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2+\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)}{6-2}\)
\(\frac{\sqrt{2+\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Rightarrow x^3=5+2\sqrt{13}+5-2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}.x\)
\(=10+3x\sqrt[3]{25-52}\)
\(=10+3x\sqrt[3]{-27}\)
\(=10-9x\)
\(\Rightarrow x^3+9x-10=0\)
\(\Leftrightarrow x^3-x+10x-10=0\)
\(\Leftrightarrow x\left(x^2-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+10\right)=0\)
Vì \(x^2+x+10=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\forall x\)
=> x - 1 = 0
=> x = 1
Thay vào A = 12015 - 12016 = 0
Vậy A = 0