K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

A=/x2+x+\(\frac{1}{4}+\frac{3}{4}\)/+/x2+3x+9/4+19/4/=/(x+1/2)2+3/4/+/(x+3/2)2+19/4/

Nhận thấy: \(\left(x+\frac{1}{2}\right)^2\ge0\) và \(\left(x+\frac{3}{2}\right)^2\ge0\)

=> A đạt giá trị nhỏ nhất khi 2 số đó bằng 0. Khi đó giá trị của A là: \(\frac{3}{4}+\frac{19}{4}=\frac{22}{4}=\frac{11}{2}\)

ĐS: A=11/2

11 tháng 9 2019

\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)

\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)

\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)

11 tháng 9 2019

\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)

\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)

\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)

\(\Leftrightarrow4x^2+6x-51=0\)

\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)

15 tháng 8 2018

a) \(A=x^2-2.10x+100+1\)

\(A=\left(x-10\right)^2+1>=1\)với mọi x

Dấu = xảy ra khi x-10 =0

                           =>x=10

Min A=1 khi x=10

b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3  mới làm dc

15 tháng 8 2018

a)A= \(\left(x^2-2.x.10+100\right)+1\)

=\(\left(x-10\right)^2+1>=1\)

Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)

Vậy MinA = 1 khi x=10

30 tháng 12 2015

http://olm.vn/hoi-dap/question/354307.html

31 tháng 12 2015

a) \(\left(x^2-3\right)^2=\left(x^2-1\right)^2\)

\(\left(x^2-3\right)^2-\left(x^2-1\right)^2=0\)

\(\left(x^2-3-x^2+1\right)\left(x^2-3+x^2-1\right)=0\)

\(-2\left(2x^2-4\right)=0\)

\(-2\times2\times\left(x^2-2\right)=0\)\(\Rightarrow x^2-2=0\)

\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Rightarrow x=\sqrt{2}ho\text{ặc}x=-\sqrt{2}\)

b)\(4x^2\left(3x-7\right)=16\left(3x-7\right)\)

\(4x^2\left(3x-7\right)-16\left(3x-7\right)=0\)

\(\left(3x-7\right)\left(4x^2-16\right)=0\)

\(\left(3x-7\right)\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow x=\frac{7}{3}ho\text{ặc}x=2ho\text{ặc}x=-2\)

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)

18 tháng 8 2018

a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)

\(\Leftrightarrow x^3+9x+2=x^3+8\)

\(\Leftrightarrow x^3+9x=x^3+8-2\)

\(\Leftrightarrow x^3+9x=x^3+6\)

\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)

\(\Leftrightarrow\frac{2}{3}\)

b) \(x^2-4=8\left(x-2\right)\)

\(\Leftrightarrow x^2-4=8x-16\)

\(\Leftrightarrow x^4-4=8x-16+16\)

\(\Leftrightarrow x^2+12=8x\)

\(\Leftrightarrow x^2+12=8x-8x\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)