K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Theo định lý Be-du thì số dư của \(P(x)=ax^3+bx^2+c\) khi chia cho \(x+2\) là:

\(P(-2)=-8a+4b+c=0\) (1)

Gọi đa thức thương khi chia $P(x)$ cho\(x^2-1\)\(Q(x)\). Khi đó ta có:

\(ax^3+bx^2+c=(x^2-1)Q(x)+x+5\)

Thay \(x=\pm 1\) ta thu được:

\(\left\{\begin{matrix} a+b+c=0.Q(1)+6=6(2)\\ -a+b+c=0.Q(-1)+4=4(3)\end{matrix}\right.\)

Từ \((1)(2)(3)\Rightarrow \left\{\begin{matrix} a=1\\ b=1\\ c=4\end{matrix}\right.\)

Vậy \((a,b,c)=(1,1,4)\)

29 tháng 12 2019

Ta có \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Do đó \(Q\ge\frac{\left(x+y+z\right)^2}{3}+\frac{1}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}+\frac{9}{x+y+z}-\frac{17}{x+y+z}\)

\(\ge3\sqrt[3]{\frac{9\cdot9\cdot\left(x+y+z\right)^2}{3\cdot\left(x+y+z\right)^2}}-\frac{17}{x+y+z}\ge9-\frac{17}{3\sqrt[3]{xyz}}=9-\frac{17}{3}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

5 tháng 6 2018

sai đề rồi bạn (P) phải là y = x^2 chứ

8 tháng 7 2018

Ta có:\(B=3-10x^2-4xy-4y^2\)

           \(=3-9x^2-x^2-4xy-4y^2\)

            \(=3-9x^2-\left(x^2+4xy+4y^2\right)\)

            \(=3-\left(3x\right)^2-\left(x+2y\right)^2\)

Vì \(\hept{\begin{cases}\left(3x\right)^2\ge0\\\left(x+2y\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left(3x\right)^2\le0\\-\left(x+2y\right)^2\le0\end{cases}}\)

\(\Rightarrow B=3-\left(3x\right)^2-\left(x+2y\right)^2\le3-0-0=3\)

Nên GTLN của B là 3 đạt được khi \(\hept{\begin{cases}3x=0\\x+2y=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=-x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow}x=y=0\)

8 tháng 7 2018

Nhìn đề bài giùm chút đi ạ