Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số tự nhiên từ 1 đến n là \(\frac{n\left(n+1\right)}{2}\)
Do đó \(A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2011}.\frac{2011.2012}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2012}{2}\)
\(=\left(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2012}{2}\right)-\frac{1}{2}\)
\(=\frac{1+2+3+...+2012}{2}-\frac{1}{2}\)
\(=\frac{\frac{2012.2013}{2}}{2}-\frac{1}{2}\)
\(=1012538,5\)
Vậy ....
\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)
\(=\frac{6}{2011}\)
c) C = ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 79 - 80 )
C = ( -1 ) + ( -1 ) + ... + ( -1 )
C = ( -1 ) x ( 80 - 1 + 1 ) : 2
C = ( -1 ) x 80 : 2
C = ( -40 )
\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)