Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2-3x+3=0\)
\(\Leftrightarrow x^2-3x+\dfrac{9}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\) ( Vô lý , \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\) )
\(\Rightarrow\) Pt vô nghiệm
b ) \(x-\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x-2\left(x-2\right)=0\)
\(\Leftrightarrow x-2x+4=0\)
\(\Leftrightarrow4-x=0\)
\(\Leftrightarrow x=4\)
Vậy ...
c ) \(\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy ...
d ) \(x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy ...
Gọi Q(x); P(x) lần lượt là thương của f(x) cho x- 1; f(x) cho x + 2.
Vì (x -1)(x +2) có dạng bậc 2 => đa thức dư có dạng ax + b.
Ta có: f(x) = (x - 1). Q(x) + 4
f(x) = (x + 2) . P(x) + 1
f(x) = (x - 1)(x +2). 5x2 + ax + b
Tại x = 1 thì f(1) = 4 = a + b (1)
Tại x = -2 thì f(-2) = 1 = -2a + b (2)
Trừ vế (1) cho (2) được:
\(a+b+2a-b=3\)
\(\Rightarrow a=1\)
Khi đó: \(b=3\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x+2\right).5x^2+x+3\)
= (x2 +x - 2). 5x2 +x + 3
= 5x4 + 5x3 - 5x2 + x + 3.
Mk làm theo đề bạn nói cho mk: c) khi chia cho (x-1)(x+2) thì đc thương là 5x^2 và còn dư
đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)
\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)
TH1: \(x-1=0\Leftrightarrow x=1\)
TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)